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We study the kagome antiferromagnet for quantum spin-1/2 with first J1, second J2, and third J3 neighbor
exchanges, along the J2 = J3 ≡ J line. We use Schwinger boson mean-field theory for the precise determination
of the phase diagram, and two different rewritings of the Hamiltonian to build an intuition about the origin of
the transitions. The spin liquid obtained at J = 0 remains essentially stable over a large window, up to J ≈ 1/3,
because it is only weakly frustrated by the J term. Then, at J ≈ 1/2, the intermediate Z2 spin liquid condenses
into a long-range chiral order because of the change of nature of the local magnetic fluctuations. As a side benefit,
our Hamiltonian rewriting offers an exact solution for the ground state of our model on a Husimi cactus.
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The Heisenberg kagome antiferromagnet (HKA) is a
canonical model of frustrated magnetism. There is now a rel-
ative consensus that its ground state is a quantum spin liquid
(QSL), the nature of which—gapless or not—remains, how-
ever, hotly debated [1–7]. A remarkable property of the HKA
is that its ground state is stable for a finite range of perturba-
tions, such as Dzyaloshinskii-Moriya interactions relevant to
herbertsmithite [4] or further neighbor exchange J1 − J2 − J3d

[8–12] (Fig. 1). The latter Hamiltonian has been actively
studied for 20 years [8], when it was rewritten as a plaquette
Hamiltonian along the J2 = J3d line [8,13]. At finite J2, J3d

values, the HKA spin liquid evolves into a Kalmeyer-Laughlin
chiral spin liquid [9,10], a magnetic analog of the topological
order in the fractional quantum Hall effect [14], and connected
to the physics of the kapellasite material [11,12]. Perturba-
tions beyond the HKA are thus a fertile ground for exotic
quantum phenomena.

In this context, one cannot fail to notice that the kagome
structure has two inequivalent types of third-neighbor cou-
plings: J3d and J3 (Fig. 1). As opposed to its more popular
counterpart, the J1 − J2 − J3 Hamiltonian has been largely
forsaken, even though there is a priori no reason to favor one
model over the other. Indeed, here also along the J2 = J3 line,
this spin Hamiltonian has been recently rewritten as a lattice
model of interacting topological charges [15,16]. For antifer-
romagnetic J , same-charge quasiparticles counterintuitively
attract each other, revealing unconventional magnetic textures
where fractionalized excitations become stable in the ground
state. These works were, however, classical [15,16]. On the
quantum front, the J3 coupling alone has lately attracted some
interest [17–19], but as far as we know, the J2 = J3 line has
only been considered in [20,21] using a pseudofermion func-
tional renormalization group approach (pf-FRG), fermionic
mean-field theory, and exact diagonalization. However, it
was not discussed in the context of interacting topological
charges.

It is the goal of this Letter to present complementary,
bosonic calculations of the J2 = J3 kagome phase diagram
[Eq. (1)], using an unrestricted algorithm of Schwinger boson
mean-field theory (SBMFT) [7,22]. Within SBMFT, we find
that the HKA spin liquid evolves into a Z2 spin liquid before
forming chiral long-range order. Our results are discussed in
the context of two Hamiltonian mappings, building an intu-
ition as to the origin of the observed phase boundaries.

Model. We consider a system of ns Heisenberg spins-1/2
with J1 = 1 and J2 = J3 ≡ J (Fig. 1),

H =
∑
〈i, j〉1

Ŝi · Ŝ j + J

(∑
〈i, j〉2

Ŝi · Ŝ j +
∑
〈i, j〉3

Ŝi · Ŝ j

)
. (1)

Method. We study Hamiltonian (1) by means of SBMFT
which treats on an equal footing magnetically ordered and
spin-liquid disordered phases [23]. A spin at site i is decou-
pled as follows:

Ŝi = 1

2

∑
αβ

b̂+
iα �σαβ b̂iβ, (2)

where �σ are the Pauli matrices, b̂(+) are bosonic operators,
and α, β =↑,↓ are spin directions along the quantization axis
perpendicular to the lattice plane. Let us recall the main lines
of the SBMFT. More details can be found in [7,22–25] and
references therein. First, the Hilbert space is enlarged by the
mapping of Eq. (2). For a spin S, it is thus necessary to
enforce the constraint n̂i = b̂+

i↑b̂i↑ + b̂+
i↓b̂i↓ = 2S on all sites

in order to project the solution back onto the physical space.
At the mean-field level, this is achieved on average by min-
imizing the free energy with respect to Lagrange multipliers
λi and introducing two SU(2)-invariant bond operators [26]:
the singlet operator Âi j = 1

2 (b̂i↑b̂ j↓ − b̂i↓b̂ j↑) and the spinon
hopping term B̂i j = 1

2 (b̂+
i↑b̂ j↑ + b̂+

i↓b̂ j↓). The latter is a typical
measure of magnetic order (where spinons can hop), while
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FIG. 1. Left: The 12-site unit cell of the kagome lattice used in
the Schwinger boson theory with the first J1, second J2, and third
J3, J3d neighbor couplings. In this Letter, we set the energy scale with
J1 = 1 and consider J2 = J3 ≡ J and J3d = 0. The arrows show the
bond orientations of the A and B parameters for nearest neighbors.
The orientations for the J2 and J3 bonds are not displayed. Right: The
first Brillouin zone (BZ) of the 12-site unit cell (dashed hexagon) is
shown, as well as the first and second BZs of the kagome lattice.
Relevant high-symmetry points are displayed.

the former is favored in disordered phases made of singlets.
Performing a mean-field decoupling on Eq. (1), we obtain the
SBMFT Hamiltonian,

HSB =
∑
i, j

Ji j[B̂
+
i jBi j + B̂i jB

∗
i j − Â+

i jAi j − Âi jA
∗
i j]

−
∑
i, j

Ji j[|Bi j |2 − |Ai j |2] +
∑

i

λi[n̂i − 2S], (3)

with mean-field parameters, Ai j = 〈φ0|Âi j |φ0〉 and Bi j =
〈φ0|B̂i j |φ0〉, as expectation values in the ground state |φ0〉
for each oriented pair of interacting spins (i → j) (Fig. 1).
We define a magnetic unit cell of nu sites that contains a
total number of 12 nu complex mean-field parameters. We
have tried unit cells up to nu = 36 and found no noticeable
differences with nu = 12, the smallest unit cell compatible
with all competitive Ansätze considered in this work. In the
rest of this Letter, we thus consider the (nu = 12) unit cell.
Equation (3) is solved numerically in a self-consistent way,
starting from random mean-field parameters {Ai j, Bi j} and
searching for the set of Lagrange multipliers {λs} satisfying
the boson constraint. This last step is achieved by using a
least-square minimization. Since all Ansätze encountered in
this work are translationally invariant, it is enough to consider
one Lagrange multiplier per site in the unit cell, {λs}s=0,··· ,nu−1.
The ground state |φ0〉 is obtained by diagonalization—using a
Cholesky decomposition [27]—of (2nu) × (2nu) q-dependent
Hamiltonians written in the Fourier space on a Brillouin zone
of linear size l containing l × l momenta (thus, ns = nu × l ×
l kagome sites). A new set of mean-field parameters is then
computed by using |φ0〉, and the same procedure is repeated
until convergence is reached up to a desired tolerance on
mean-field variables, typically 10−11. |φ0〉 corresponds to the
T = 0 boson vacuum whose gap scales like ∼1/l for an or-
dered phase; condensation only appears in the thermodynamic
limit. We emphasize here that our solutions are unconstrained
[28,29] and do not a priori assume particular symmetries.
The way we update the set of parameters also allows for

a derivative-free formulation of the theory that can treat at
once complex mean-field solutions. We noticed this approach
was more stable than an explicit minimization of the free
energy. As a final comment, in the Schwinger boson language,
〈Ŝ2〉 = 3S(S + 1)/2. This is why we work with the commonly
used spin value S = 1

2 (
√

3 − 1) in order to recover the good
quantum number 〈Ŝ2〉 = 3/4 of a quantum spin-1/2 [3].

Observables. The inelastic structure factor is a useful tool
to visually identify phases, irrespective of whether or not they
are ordered,

S(q, ω) = 1

ns

∑
m,n

eiq(rm−rn )
∫ ∞

∞
dte−iωt 〈Ŝm(t ) · Ŝn〉, (4)

where the sum runs over all ns sites. Details about the
derivation are given in Ref. [24]. The equal-time structure
factor S(q) is obtained by integrating over all frequencies
ω. Wilson loops (WLs) are also available to quantitatively
differentiate nontrivial orders [31,32]. These gauge-invariant
quantities are defined along a given closed path on the
lattice. Here, two types of nonwinding loops are required
to categorize the Ansätze by their flux structure: loops
of length 6 on a hexagon, and of length 8 on a rhom-
bus (Fig. 2). Magnetic phases are now characterized by
the flux piercing each of these loops (φh/π, φr/π ) [25],
with φh = arg[A12(−A∗

25)A57(−A∗
76)A64(−A∗

41)] and φr =
arg[A01(−A∗

12)A25(−A∗
58)A87(−A∗

76)A64(−A∗
40)].

The phase diagram obtained from SBMFT is composed of
three phases (Fig. 2) and is consistent with the pf-FRG results
of [20], with two spin liquids and an ordered phase. Reference
[20] was, however, addressing a large range of models, and
the nature of the spin liquids and position of the boundaries
were not necessarily discussed in detail. Also, while our
Schwinger boson approach is a zero-temperature mean-field
theory, pf-FRG results were obtained at low, but nonetheless
finite, temperatures. The structure factors of Fig. 20 in [20]
are, for example, reminiscent of Fig. 3 in [16] obtained from
classical Monte Carlo simulations at low temperature. A pre-
cise comparison between our two works is thus difficult. With
that in mind, the SBMFT phase diagram is as follows:

Chiral spin-liquid cuboc1. At J = 0, the HKA ground state
within SBMFT is known to be the cuboc1 state [3]. The
name comes from its magnetic unit cell composed of 12 spins
forming the shape of a cuboctahedron. Since the flux piercing
a hexagon is not quantized in units of π , the phase is chiral
and breaks the time-reversal symmetry. We find that the chiral
cuboc1 ground state persists up to J = 0.33, whose Ansatz
possesses a gauge degree of freedom (see Supplemental
Material [33]).

Z (1,0)
2 spin liquid. At J = 0.33(1), a phase transition to a

Z2 QSL is observed. This phase has the same flux structure
(π, 0) as the gapped SL obtained from the quantum melting of
the q = 0 order introduced by [34]. All mean-field parameters
have the same amplitudes A and B, whose values slowly
vary with 0.33 < J < 0.50 while preserving the (π, 0) flux
structure.

Chiral magnetic order LRO(1,1). A second transition takes
place at J = 0.50(1), concomitant with the closing of the gap
	 in the thermodynamic limit [Fig. 2(d)], indicating long-
range order, with both hexagons and rhombii WLs possessing
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(a)

(b) (c) (d)

FIG. 2. (a) SBMFT phase diagram of the kagome antiferromagnet along the J2 = J3 = J line. Three phases are identified: a chiral spin
liquid (cuboc1) [3,30], a Z2 spin liquid (Z (1,0)

2 ) originating from the q = 0 Ansatz, and a magnetically ordered phase (LRO(1,1)) coming from the
Bose condensation of its spin-liquid counterpart, the Z (1,1)

2 . For each ground state, the sign structure of the nearest neighbors Ai j is given, with
thin (thick) lines corresponding to positive (negative) values of Ai j . For all phases, nearest neighbors |Ai j | = A. For the cuboc1, the arguments
of Ai j are different between up and down triangles. Phases are also characterized by the flux φr on rhombii and φh on hexagonal Wilson
loops. (b)–(d) Finite-size scaling of the energy gap 	 above the ground state for J = {0.2, 0.45, 0.6} with ns = 6 l2. The y axis in (d) has
been multiplied by 10. The spin length in SBMFT is S = (

√
3 − 1)/2, which gives the good quantum number 〈Ŝ2〉 = 3/4 of a quantum

spin-1/2 [3].

a π flux. This state can be seen as a Bose condensation of the
Z (1,1)

2 QSL reported by [25] in the breathing kagome lattice;
we call it the LRO(1,1) state. Additionally, arg(A) and arg(B)
are nonzero, which means that this magnetic order is chiral.

Discussion. In the rest of this Letter, we will endeavour to
rationalize the origin of these phase transitions. Let us start

with the onset of magnetic order at J = 0.5. Up to a constant,
Eq. (1) is equivalent to [15,16,35]

H =
(

1

2
− J

) ∑
n

M̂2
n − J

∑
〈n,m〉

M̂n · M̂m, (5)

(b) (c)(a)

FIG. 3. Correlations in real space (top) and Fourier space S(q, ω) [Eq. (4)] (bottom) for the (a) cuboc1 at J = 0.2, (b) Z (1,0)
2 at J = 0.4,

and (c) LRO(1,1) at J = 0.6. The reference site is the blue circle at the center. The strength and sign of the correlations are, respectively, given
by the radius and color of the circles (red is negative). The path in Fourier space is given in Fig. 1. System size is ns = 1728.
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FIG. 4. Structure factor S(q) of the cuboc1, Z (1,0)
2 and LRO(1,1) Ansätze for increasing J (given in each panel). The Z (1,0)

2 structure factor
is qualitatively the same for 0.33 < J � 0.5, but when the Z (1,0)

2 Ansatz becomes an excitation for J > 0.50 (gray boxed panels), half-moon
patterns appear in the second BZs. The color scale is normalized on all panels, except for LRO(1,1) where a cutoff is imposed to emphasize the
low-intensity scattering. System size is ns = 1728.

where the summations run over all triangles n and neighboring
pairs of triangles 〈n, m〉, and

M̂n ≡ ζn

∑
i∈n

Ŝi (6)

is the magnetization of the three spins of triangle n, up
to a staggered prefactor ζn = ±1 distinguishing between up
and down triangles. This mapping was studied classically
on the kagome [15,16] and pyrochlore [36,37] lattices. For
J > 1/2, the first term of Eq. (5) favors saturated mag-
netization on all triangles, while the second term prevents
long-range ferromagnetism because of the staggered prefactor
ζn. For Ising spins, M̂n becomes a discretized scalar corre-
sponding to a topological charge sitting on all triangles, and
the first term of Eq. (5) is their chemical potential. Hence,
at the level of a triangle, J = 1/2 is the frontier between
locally antiferromagnetic (J < 1/2) and ferromagnetic (J >

1/2) fluctuations. This interpretation is in agreement with
real-space correlations (Fig. 3). Nearest-neighbor correlations
are short-range antiferromagnetic in the cuboc1 and Z (1,0)

2 spin
liquid [(Figs. 3(a) and 3(b)], while ferromagnetic correlations
appear on some triangles in the LRO(1,1) Ansatz [Fig. 3(c)].
The position of this boundary could a priori be shifted by
the second term of Eq. (5)—this is what happens in classical
systems [15,16]—but in our quantum model, this local mech-
anism is a probable cause for the Bose condensation observed
at J = 0.5.

When taken alone, the J3 term connects only spins on the
same sublattice and forms three disconnected nonfrustrated
square lattices, which explains the long-range antiferromag-
netic order between the same-sublattice spins of Fig. 3(c). And
the loss of correlations between different sublattices at long
distance indicates destructive quantum interference, probably
due to the J2 term connecting different sublattices, that forms
three disconnected frustrated kagome lattices.

In classical systems at low temperature, this onset of local
ferromagnetism coincides with the apparition of characteristic
patterns in the structure factor, known as half moons [16], that
were also observed in pf-FRG [20]. Here we do not find these
patterns in the ground-state phase diagram (Fig. 4). However,
for J > 0.5, the lowest excited Ansatz we could stabilize in
the self-consistent SBMFT procedure is the Z (1,0)

2 spin liquid,

with an additional chiral flavor (i.e., some of its mean-field
parameters become complex for J > 0.5). This chirality co-
exists with half-moon patterns in the structure factor. One
needs to remain cautious since SBMFT is a zero-temperature
calculation, but the presence of these patterns in an excited
Ansatz is consistent with their presence at low temperature
[16,20].

On the other end of the phase diagram, the presence of
the cuboc1 phase corresponds to the region of stability of
the HKA spin liquid, within SBMFT, in the presence of the
J perturbation. This region is noticeably large [20,21] and
raises the question about the origin of such permanence. Let
us consider another rewriting of Hamiltonian (1), up to a
constant,

H = 1

2
(1 − 3J )

∑
n

T̂2
n + J

2

∑
〈α〉

Ĝ2
α, (7)

where the summations run over all triangles n and bitriangles
α. A bitriangle is composed of two triangles and five sites (in
a shape reminiscent of a hourglass), and

T̂n ≡
∑
i∈n

Ŝi and Ĝα ≡
∑
j∈α

Ŝ j (8)

are the total magnetization on triangle n and bitriangle α.
According to the fusion rule of angular momentum, we
have 〈T̂2

n〉 = Tn(Tn + 1) ∈ { 3
4 , 15

4 } and 〈Ĝ2
α〉 = Gα (Gα + 1) ∈

{ 3
4 , 15

4 , 35
4 }. Hence, for 0 < J < 1/3, the minimal eigenvalue

of Hamiltonian (7), if geometrically possible, would be{
Tn = 1

2 & Gα = 1
2 | ∀ n, α

}
. (9)

Equation (9) means having one singlet on all triangles and two
singlets on all bitriangles, with the important property that
the former constraint is a sufficient condition to satisfy the
latter. Paving the kagome lattice with one singlet per triangle
is famously impossible; otherwise, the HKA ground state for
J = 0 would have been known for a long time. That being
said, we know that the HKA ground state, irrespective of its
nature, necessarily minimizes the energy of the first term of
Hamiltonian (7). According to constraint (9), we can reason-
ably expect that the HKA ground state would also minimize
the second term of Hamiltonian (7), up to a small deformation
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of the Ansatz. And in that case, this deformed HKA Ansatz
should remain ground state up to J ∼ 1/3 when constraint (9)
stops being valid. This is precisely what we find in SBMFT
with a stable cuboc1 phase and a slowly varying chiral φh flux
from J = 0 to 0.33 (see Supplemental Material [33]). Please
note that the almost perfect match is probably too good to be
true; corrections beyond mean field might shift the boundary
a little bit. Fermionic mean-field theory finds, e.g., a boundary
at J = 0.27 [21], where the stability of the J = 0 phase is
related to the persistence of the eigenbasis of the mean-field
Hamiltonian. For the sake of completeness, we checked that
the phase diagram remains essentially the same for larger
spins S = 1/2, with boundaries shifted from 0.33 to 0.28 and
from 0.50 to 0.47 (see Supplemental Material [33]). The main
difference is that the HKA ground state is known to be gapless
for S = 1/2 within SBMFT [3]. In our model, the gap opens
at J = 0.15–0.20.

Summary. We find that (i) the HKA spin liquid persist up
to J ≈ 1/3 because the further-neighbor perturbation J is only
weakly frustrated with the dominant nearest-neighbor antifer-
romagnetic exchange; and (ii) the onset of long-range order at
J ≈ 1/2 comes from the local change of fluctuations imposed
on each triangle. In that sense, the intermediate Z (1,0)

2 spin
liquid is the best compromise within SBMFT satisfying the
competition between the two terms of Hamiltonians (5) and
(7). As a side note, the Z (1,0)

2 spin liquid also coincides with a
shift of scattering from the K to the M points in the structure
factor, a precursor of the emergence of the half moons in the
excited Ansatz for J > 1/2 (Fig. 4).

Outlook. The HKA ground state is famously elusive [1–7].
While magnetic order is likely stable above J ≈ 1/2 beyond
mean field, the low-J phase is expected to depend on the
method. In this context, does our reasoning based on Hamilto-

nian (7) remain valid with other methods, and does the HKA
spin liquid persist up to J ∼ 1/3? The dynamics, excitations,
and low-temperature physics are also promising directions to
follow.

To conclude, we should point out that constraint (9) is
easily satisfied on a Husimi cactus. It means that the rewriting
of Hamiltonian (7) provides an exact solution of the ground
state of a nontrivial interacting model on a Husimi cactus for
0 � J � 1/3, which can be extended to other geometries. The
line J2 = J3 probably shares some common properties across
different frustrated systems in various dimensions that would
be worth exploring in a systematic way.

Note added. Recently, a preprint by Kiese et al. [38]
appeared studying the same model with complementary meth-
ods. They also find long-range magnetic order for J >

0.51(1), which is consistent with our real-space correlations
[Fig. 3(c)] and supports the same Bragg peaks (except at the M
point) and low-intensity star patterns as in Fig. 4 for LRO(1,1).
The HKA ground state obtained from their methods is the
U(1) gapless spin liquid, which persists up to J = 0.30(5),
consistent with our estimate of ∼1/3. Their intermediate
phase, however, is not a spin liquid, but a pinwheel valence
bond crystal.
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