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Topological burning glass effect
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We reveal a topological burning glass effect, where the local response of a system exhibits a topological
quantization that is enhanced by an integer due to its environmental coupling. As a paradigmatic platform for
this intriguing phenomenon, we study a central spin that is quasiperiodically driven by two incommensurate
frequencies, and statically coupled to N − 1 surrounding spins. In the strong-coupling regime, the adiabatic
dynamics of the total system is readily understood to imprint on the central spin an N-fold enhanced topological
frequency conversion between the two driving frequencies. We argue that the topological burning glass effect
is induced by the nonunitary dynamics of the central spin, which locally involves the collective motion of
the surrounding spins. Our results are derived in the framework of adiabatic perturbation theory and fully
corroborated by exact numerical simulations.
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Introduction. Geometry and topology have been identified
to be at the heart of some of the most fascinating phenom-
ena in physics [1–4]. A paradigmatic example is provided
by the quantum Hall effect [5,6], where an impressively
precise quantization of the transverse conductance in two-
dimensional (2D) systems has been explained with theory in
terms of a topological invariant characterizing the underlying
electronic state [7–10].

Generally speaking, linear response properties such as
the aforementioned Hall conductance are governed by the
celebrated Kubo formula [11,12]. When interpreted as a dy-
namical expression, linear response ostensibly refers to the
first perturbative correction of the state due to an external
field. However, as an equilibrium property, it can eventu-
ally be understood in terms of the unperturbed state alone.
Returning to the integer quantum Hall effect, the topolog-
ically quantized response is thus characterized by the first
Chern number [8,13–17], an invariant defined in terms of the
adiabatic Berry curvature [18] of the occupied Bloch bands
exclusively referring to the ground state of the system.

In this Letter, we reveal how this correspondence between
adiabatically defined topological invariants and quantized re-
sponse properties is fundamentally modified in open quantum
systems. To this end, we extend the Floquet counterpart of an
integer quantum Hall system [19], i.e., a spin driven with two
incommensurate frequencies, by statically coupling it to a set
of surrounding spins in the framework of a central spin model
(CSM) [20–22] (see Fig. 1). In this system, the topologically
quantized response is given by the energy transfer between
the two driving modes, which represents a local observable of
the driven central spin. Yet, the adiabatically defined Chern
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number of the central spin fails to predict the linear response
signal, which can instead only be topologically understood
from the adiabatic state of the total system. In this sense,
the topological properties of the environmental spins are fo-
cused to the local response of the central spin, motivating
the terminology of a topological burning glass. We argue
that the topological burning glass effect generically occurs
in any static extension of the CSM under the following three
conditions: (i) The initial state of the interacting spin system is
energetically separated from the other bands, (ii) the dynam-
ics is well described within first-order adiabatic perturbation
theory [23,24], and (iii) the time-quasiperiodic fields only
act on the central spin. In our concrete topological burning
glass scenario, the quantized energy transfer is found to be
N-fold enhanced by the collective motion of N spins, while
the adiabatic Chern number of the driven spin remains equal
to one. Our analytical results are corroborated by numerically
exact simulations, which also allow us to systematically study
the breakdown of the adiabatic dynamics in our model. This
nonadiabatic breakdown occurs when the driving frequencies
approach the size of the energy gap above the many-body
ground state that generically scales as 1/N in our model.

Model and adiabatic perturbation theory. We consider
the dynamics of a central spin that is subjected to a time-
quasiperiodic magnetic field B(�ϕt ), and interacts in a static
fashion with its environment. A minimal framework for this
scenario is provided by the following driven CSM (see Fig. 1
for an illustration),

Ĥ (�ϕt ) = g∗ μB B(�ϕt ) · Ŝ0 − A Ŝ0 · Ĵ, (1)

where Ŝ0 = 1
2 σ̂0 represents the central spin-1/2 and Ĵ =∑N−1

k=1 Ŝk = ∑N−1
k=1

σ̂k
2 the surrounding spins. The environment

is composed of a number of N − 1 spin-1/2, and is assumed
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FIG. 1. Quasiperiodically driven central spin model (CSM) as a
topological burning glass. A central spin (red sphere) couples in star
geometry to N − 1 surrounding spins (blue spheres). The isotropic
interaction is parametrized by the homogeneous coupling constant A.
The central spin is subjected to a static magnetic field with amplitude
Bs and two circularly polarized drives with incommensurate frequen-
cies ω1 and ω2, so as to induce a topological frequency conversion.

to interact homogeneously with the central spin with coupling
strength A. We have set h̄ = 1 and introduced the vector
of Pauli matrices σ̂ i = (σ̂ x

i , σ̂
y
i , σ̂ z

i ) acting on the individual
subspaces of the constituents. The Zeeman term generated
by the magnetic field B(�ϕt ) is proportional to Bohr’s mag-
neton μB and the effective g∗ factor of the central spin. This
model effectively applies for instance to driven electron spins
trapped in lateral quantum dots in SiGe or nitrogen-vacancy
(NV) centers in diamond [25]. In these systems, the (central)
electron spin couples in a starlike fashion to the surrounding
nuclear spins of the host material, with a hyperfine interac-
tion that is typically three orders of magnitude larger than
the dipole-dipole coupling between the nuclear spins them-
selves [26–28].

The time dependence of the external field B(�ϕt ) = Bc d(�ϕt )
is chosen as [10,19,29]

d(�ϕt ) =

⎛
⎜⎝

sin(ϕ1t )

sin(ϕ2t )

M − cos(ϕ1t ) − cos(ϕ2t )

⎞
⎟⎠.

It consists of a static magnetic field with amplitude Bs = Bc M
in the z direction, and two circularly polarized drives, with
amplitudes Bc and time-dependent phases �ϕt = (ϕ1t , ϕ2t ) =
�ω t + �φ. The offset phases and incommensurate frequencies
are parametrized by �φ = (φ1, φ2) and �ω = (ω1, ω2).

In order to cope with the influence of the surrounding spins,
we take advantage of the homogeneity of the interaction based
on the starlike symmetry of Eq. (1), that entails [Ĥ (�ϕt ), Ĵ2] =
0. The Hamiltonian Ĥ (�ϕt ) may thus be transformed into a
block diagonal form, with each block characterized by a con-
stant of motion,

j =
{

N−1
2 , N−1

2 − 1, . . . , 1
2 , N even,

N−1
2 , N−1

2 − 1, . . . , 0, N odd,

corresponding to the total spin Ĵ2 of the surrounding spins
with N � 2. As we want to focus on the dynamics originating

from the ground state, we restrict ourselves to the block j =
N−1

2 [30]. The associated block matrix size is 2N × 2N , and
the instantaneous spectrum is obtained by solving

Ĥ (�ϕt ) |�α (�ϕt )〉 = Eα (�ϕt ) |�α (�ϕt )〉 . (2)

The energies Eα (�ϕt ) are ordered from low to high values by as-
cending indices α = 0, 1, . . . , 2N − 1, where α = 0 denotes
the ground state. For an incommensurate pair of frequencies
ω1
ω2

/∈ Q, the phases ϕ1t and ϕ2t sample entirely the surface
of a two-dimensional torus, analogously to a synthetic 2D
Brillouin zone (BZ). The energy levels Eα (�ϕt ) then resemble
a band structure in parameter space, with the phases �ϕt taking
the role of Bloch quasimomenta. Assuming that the interact-
ing spin system is gapped [30] and initially prepared in an
instantaneous eigenstate |�β (�ϕt0 )〉 of Eq. (2), the dynamics
can be expanded to first order in �ω using adiabatic perturba-
tion theory [23,24]:

|	β (t )〉 = eiγβ (t )

[
|�β (�ϕt )〉 + i

∑
α �=β

Mαβ (�ϕt )

�αβ (�ϕt )
|�α (�ϕt )〉

]
.

(3)
At zeroth order, the quantum state |	β (t )〉 is restricted
to the synthetic energy band Eβ (�ϕt ). First-order correc-
tions, however, yield virtual transitions to the excited
states of the instantaneous spectrum, weighted by the
terms Mαβ (�ϕt ) = �ω 〈�α (�ϕt )|∇�ϕ�β (�ϕt )〉 and the energy gaps
�αβ (�ϕt ) = Eα (�ϕt ) − Eβ (�ϕt ). We have also introduced the
overall phase factor γβ (t ) = − ∫ t

t0
dt ′[Eβ (�ϕt ′ ) − iMββ (�ϕt ′ )].

Topological frequency conversion. A feature of quasiperi-
odically driven systems is energy pumping, a process in which
photons of different frequencies are exchanged between the
external drives [19,31–44]. The total energy transfer rate is
determined by the equations of motion: d

dt 〈Ĥ〉 = 〈∂t Ĥ〉 =
�ω 〈Î〉, with Î = (Î1, Î2 ) = ∇�ϕ Ĥ . Each term ωk 〈Îk〉 can be
interpreted as the pumping rate provided by the individual
drive, where Îk = ∂ϕk Ĥ resembles a current operator in the k
direction of the parameter space. Using the perturbed quantum
state |	β (t )〉 from Eq. (3), the expectation value 〈Îk〉 can be
expanded to first order in �ω [24,45]:

〈Îk〉β = 〈	β |Îk|	β〉 = ∂Eβ

∂ϕk
+

2∑
l=1

ωl 

(β )
kl . (4)

This result emphasizes that virtual couplings between bands
are essential for the generation of geometrical and topological
effects, as the adiabatic limit only produces Bloch oscillations
∂ϕk Eβ [46]. In fact, the virtual interband excitations of Eq. (3)
can be readily shown to be identical to the Berry curvature



(β )
kl (�ϕt ) = 2 Im[〈∂ϕk �β (�ϕt )|∂ϕl �β (�ϕt )〉] of the synthetic en-

ergy band Eβ (�ϕt ) to which the adiabatic dynamics is confined.
This phenomenon demonstrates that, in an isolated quantum
system, the Berry curvature 


(β )
kl arises as the adiabatic first-

order response of a physical observable (Îk = ∂ϕk Ĥ ) to the rate
of change of the external parameter (e.g., �̇ϕt = �ω) [24,45].

As the two frequencies ω1
ω2

/∈ Q are incommensurate, the
entire synthetic 2D BZ is sampled during the time evolu-
tion of the quantum state |	β (t )〉. Averaging the pumping
rates of Eq. (4) over a long period of time, this trans-
lates into an integration over the closed manifold of the
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two-dimensional torus. The Bloch oscillations do not con-
tribute to this integration, while the integrated Berry curvature
produces a topological frequency conversion between the
dynamical drives that is proportional to the first Chern num-
ber C(β ) = 1

2π

∫∫ 2π

0 d2 �ϕ 

(β )
12 (�ϕ). The time-averaged pumping

rate yields [19]

P12
β = −P21

β = C(β )

2 π
ω1 ω2. (5)

The topologically quantized response of the total quantum
system of Eq. (1) is thus characterized by its adiabatically
defined topological invariant C(β ). We contrast this behavior
with its counterpart in an open quantum system in the next
section.

Burning glass effect. We take an open quantum system per-
spective, in which a physical observable of interest operates
locally on the (small) quantum system that is coupled to a
(larger) environment. Specifically, in Eq. (1), only the central
spin is exposed to the quasiperiodic field B(�ϕt ), resulting in a
current operator Îk = λ

∂d(�ϕt )
∂ϕk

· Ŝ0 that acts exclusively on the
central spin-1/2. Accordingly, the expectation value

〈Îk〉β = Tr
[
ρ̂

dy
β Îk

] = Tr0
[
ρ̂

dy
0,β Îk

]
(6)

can be fully determined by the nonunitary dynamics of
the central spin, expressed by the reduced density matrix
ρ̂

dy
0,β (t ) = TrĴ[ρ̂dy

β (t )]. Here, we have introduced the total den-

sity matrix ρ̂
dy
β (t ) = |	β (t )〉〈	β (t )|, where |	β (t )〉 represents

the perturbed quantum state of Eq. (3) [47]. The reduced
density matrix is calculated by tracing out the environment Ĵ
(denoted as TrĴ), while Tr (Tr0) denotes the trace operating
on the total system (the central spin-1/2). We have further
introduced the energy scale

λ = g∗ μB Bc,

assuming λ > 0 for simplicity.
Equation (6) illustrates that the frequency conversion is

entirely carried by the central spin. The topological quanti-
zation of the local response, however, is determined by the
geometrical and topological properties of the total system,
namely the Berry curvature 


(β )
kl and the Chern number C(β )

of the synthetic energy band Eβ (�ϕt ) to which the adiabatic
dynamics is confined. Thus, the nonunitary dynamics of the
central spin effectively inherits the topological nature of the
total system. Employing the perturbed quantum state |	β (t )〉
of Eq. (3), this phenomenon can be further analyzed by a
first-order expansion in �ω of the reduced density matrix

ρ̂
dy
0,β (t ) = ρ̂ad

0,β (t ) +
∑
α �=β

T̂αβ (�ϕt )

�αβ (�ϕt )
. (7)

Here, we introduce the adiabatic limit of the reduced density
matrix ρ̂ad

0,β = TrĴ[|�β〉〈�β |], which corresponds to the ze-
roth order of Eq. (3), and results in Bloch oscillations ∂ϕk Eβ of
Eq. (4). The local response, however, arises from the operators
T̂αβ = iMαβTrĴ[|�α〉〈�β |] + H.c. accounting for the virtual
transitions to the excited states in the instantaneous spectrum
of the total system. In fact, the correlations of the total system
are manifested in the matrix elements of T̂αβ , thus imposing a

topological quantization that is not captured by basic geomet-
rical or topological aspects of the reduced adiabatic density
matrix ρ̂ad

0,β . In this sense, the adiabatic topological properties
of the total system are focused to the local response of the
central spin, which motivates the terminology of a topolog-
ical burning glass. This mechanism is quite generic, since
Eqs. (2)–(7) reflect fundamental concepts that do not depend
on the details of the model. Instead, it is only assumed that
the adiabatic dynamics starts from a gapped synthetic energy
band of the total system, and that the physical observable of
interest operates locally on the (small) quantum system. The
robustness of our results to more generic couplings is further
corroborated in the Supplemental Material (SM) [30].

To further analyze the topological burning glass effect,
we contrast the dynamics of a decoupled central spin with
the collective dynamics in the strong-coupling regime. We
start with the noninteracting case, where Eq. (1) transforms
into a single-spin Hamiltonian resembling the momentum-
space representation of a Chern insulator [10,29] with mass
parameter M. Thus, each of the two single-spin energy
bands can be characterized by a Chern number [8,13–17]:
νgr = −νex = ±1 (nontrivial) for |M| < 2, M �= 0 or νgr =
νex = 0 (trivial) for |M| > 2, where νgr (νex) corresponds to
the single-spin ground (excited) energy band. Starting from
the single-spin ground state, the adiabatic dynamics pro-
duces a topological frequency conversion that is proportional
to νgr = − 1

4π

∫∫ 2π

0 d2 �ϕ d̃(�ϕ)[∂ϕ1 d̃(�ϕ) × ∂ϕ2 d̃(�ϕ)] with d̃(�ϕ) =
d(�ϕ)
|d(�ϕ)| . In the interacting case, the interaction effectively ex-
tends the magnetic coupling to the surrounding spins, forcing
them to rotate along the direction of the external field B(�ϕt )
as well. In the strong-coupling regime and for ferromagnetic
coupling strength A > 0 [30], this collective behavior imposes
a topological frequency conversion that is proportional [cf.
Eq. (5)] to the total Chern number

C(0) = N νgr (8)

of the ferromagnetic ground state. This behavior affords a
simple interpretation: In the adiabatic limit, the surrounding
spins point in the same direction as the central spin at every
point in time, such that each spin contributes to the many-
body wave function by the same single-spin Chern number
νgr. Importantly, the adiabatic ground state is a product state
at all times, such that the reduced adiabatic density matrix
ρ̂ad

0,0 = 1
2 [1 − d̃(�ϕ) · σ̂] yields a Chern number νgr that is given

by that of a single spin-1/2. The latter thus fails to capture
the topological quantization and enhancement of the local
response, revealing a burning glass effect in which the afore-
mentioned collective motion of all spins is locally imprinted
in the nonunitary dynamics of the central spin. In fact, as
we describe in the SM [30], the operators T̂αβ of Eq. (7)
induce fluctuations around the adiabatic spin polarization of
the central spin-1/2, including the topological information of
the total system, and affecting the indirect measurement of the
topological frequency conversion [48–50].

Numerical simulations. We corroborate the formation
of a topological burning glass by numerically solving the
Schrödinger equation associated with Ĥ up to times λ T =
5 × 105 [51]. If the initial state at t0 = 0 corresponds to
the ferromagnetic ground state, the time-averaged pumping
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FIG. 2. Nonequilibrium phase diagram as a function of in-
teraction strength A > 0 and frequencies ω1 = ω, ω2 = γ ω for
N = 5. The mass parameter M = 1.2 is chosen in the nontriv-
ial topological regime (νgr = 1). Provided the adiabatic dynamics
is confined to the ferromagnetic ground state, the time-averaged
pumping rate P12 is proportional to the Chern number C (0) = N νgr

(red regime). Nonadiabatic excitations can result in transitions to
intermediate/featureless quantum phases with pumping rates P̄12 =
νgr

2 π
ω1 ω2 (blue regime)/P12 = 0 (white regime).

rate P12 can be extrapolated by the gradient [52] of the en-
ergy transfer W1(t ) = ω1

∫ t
0 dt ′ 〈Î1(t ′)〉. In Fig. 2, the pumping

rate P12 is shown as a function of ferromagnetic interaction
strength A > 0 [30] and frequency ω for a total number of
spins N = 5, where we have introduced the renormalized
interaction strength A = A/λ. The mass parameter M = 1.2
is selected such that the system is in the nontrivial topo-
logical regime, yielding an adiabatic Chern number νgr = 1
of the driven spin. We have chosen the frequencies ω1 = ω

and ω2 = γ ω, where γ = 1
2 (1 + √

5) is the golden ratio. The
offset phases are φ1 = π/10, φ2 = 0.

A finite interaction strength drives the system into the
burning glass regime with an N-fold enhanced topological fre-
quency conversion determined by the Chern number of Eq. (8)
(red regime). Away from the zero-frequency limit, there ex-
ist parameter ranges at which the strong-coupling regime of
Eq. (5) breaks down. The dynamics leads to nonadiabatic
excitation processes between the instantaneous eigenstates
of the spectrum, yielding a suppression of the dynamical

response. Finally, the system enters an ergodic regime that
leads to a featureless state with pumping rate P12 = 0 (white
regime). Interestingly, in the CSM, there exists an interme-
diate dynamical quantum phase in which the spectrum is
only partially occupied. The topological frequency conver-
sion then even extends to a nonadiabatic situation, with a
pumping rate P̄12 = νgr

2 π
ω1 ω2 similar to that of the single

spin (blue regime). A detailed description of the nonadia-
batic breakdown of the strong-coupling regime is presented
in the SM [30], showing that the parameter ranges of the
nonequilibrium phase diagram mainly depend on the rela-
tions between the driving frequencies and the energy gaps
of the band structure. More precisely, the phase boundaries
in Fig. 2 are approximately covered by critical frequencies
proportional to the energy gaps separating the spectrum into
the aforementioned dynamical quantum phases. Note that
these energy gaps scale with 1/N , indicating that the topolog-
ical burning glass effect represents a finite-size effect in our
model.

Conclusion. We have discovered a topological burning
glass effect, in which the local response of a quantum sys-
tem exhibits a topological quantization that is enhanced by
an integer due to its environmental coupling. The quantum
system adopts the topological nature of the total system in its
nonunitary dynamics, imposing a local response that cannot
be captured by its reduced adiabatic density matrix. We expect
that this intriguing phenomenon exemplifies a more general
principle of topological open quantum systems.

As a prototypical example of a topological burning glass,
we have studied energy pumping in a quasiperiodically driven
central spin model. In the strong-coupling regime, the central
spin experiences a magnification of the topological frequency
conversion that is significantly enhanced with the number
of surrounding spins. This amplification could be exploited
to enable the direct experimental observation of a quantized
energy current, providing a complementary approach to the
recent suggestions made in the context of Weyl semimet-
als [53].
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