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Non-Hermitian higher-order topological superconductors in two dimensions: Statics and dynamics
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Being motivated by intriguing phenomena, such as the breakdown of conventional bulk boundary corre-
spondence and the emergence of skin modes in the context of non-Hermitian (NH) topological insulators, we
here propose a NH second-order topological superconductor (SOTSC) model that hosts Majorana zero modes
(MZMs). Employing the non-Bloch form of the NH Hamiltonian, we topologically characterize the above modes
by biorthogonal nested polarization and resolve the apparent breakdown of the bulk boundary correspondence.
Unlike the Hermitian SOTSC, we note that the MZMs inhabit only one corner out of four in the two-dimensional
NH SOTSCs. Such a localization profile of MZMs is protected by mirror rotation symmetry and remains
robust under on-site random disorder. We extend the static MZMs into the realm of the Floquet drive. We find
the anomalous 7 mode following low-frequency mass kick in addition to the regular 0 mode that is usually
engineered in a high-frequency regime. We further characterize the regular 0 mode with biorthogonal Floquet
nested polarization. Our proposal is not limited to the d-wave superconductivity only and can be realized in the
experiment with strongly correlated optical lattice platforms.
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Introduction. In recent times, topological phases in in-
sulators and superconductors have been extensively stud-
ied theoretically [1-6] as well as experimentally [7,8].
The conventional bulk boundary correspondence (BBC)
for the first-order topological phase is generalized for the
n(> 1)th-order topological insulator (TT) [9-20] and topolog-
ical superconductor [21-41] in d > 2 dimensions where there
exist n, = (d — n)-dimensional boundary modes. The zero-
dimensional corner and one-dimensional (1D) hinge modes
are, thus, the hallmark signatures of higher-order topological
insulator (HOTT) and higher-order topological superconductor
(HOTSC). The dynamic analog of these phases are exten-
sively studied for Floquet HOTI (FHOTTI) [42-59] and Floquet
HOTSC (FHOTSC) [60-66].

The realm of topological quantum matter is transcended
from the Hermitian system to the non-Hermitian (NH)
system due to the practical realization of TI phases in
metamaterials [67-70] where energy conservation no longer
holds [71,72]. The NH description has a wide range of ap-
plications, including systems with source and drain [73,74],
in contact with the environment [75-77], and involving
quasiparticles of a finite lifetime [78-80]. Apart from the
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complex eigenenergies and nonorthogonal eigenstates, the
NH Hamiltonians uncover a plethora of intriguing phenomena
in TI [72,81-84] that do not have any Hermitian analog.
For instance, NH Hamiltonian becomes nondiagonalizable
at exceptional points (EPs) where eigenstates, correspond-
ing to degenerate bands, coalesce [85,86]; line and point
are two different types of gaps in these systems that can be
adiabatically transformed into Hermitian and NH systems,
respectively [82]; the conventional Bloch wave functions do
not precisely indicate the topological phase transitions under
the open-boundary conditions (OBCs) leading to the break-
down of the BBC [87-93]; consequently, the non-Bloch-wave
behavior results in the skin effect where the bulk states ac-
cumulate at the boundary [87-89,94], and the structures of
topological invariants become intricate [81,95-97]. The EPs
are studied in the context of Floquet NH Weyl semimet-
als [98,99].

Whereas much has been explored on the HOTI phases
in the context of NH systems [100-109], the HOTSC
counterpart, along with its dynamic signature, is yet to be ex-
amined. Note that NH 1D nanowires with s-wave pairing and
p-wave SC chain are studied for the Majorana zero modes
(MZMs) [110-116]. We, therefore, seek the answers to the
following questions that have not been addressed so far in the
context of proximity-induced HOTSC with non-Hermiticity:
(a) How does the BBC change as compared to the Hermitian
case? (b) Can one use the concept of biorthogonal nested
Wilson loop to characterize the MZMs there similar to that
for HOT electronic modes [101]? (c) How can one engineer
the anomalous FHOTSC phase for the NH case?

Considering the NH TI in the proximity to a d-wave super-
conductor, we illustrate the generation of the NH second-order
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FIG. 1. We show |E|, Re[E], and Im[E], obtained from the real-
space Hamiltonian under OBC in all directions using Eq. (1) as a
function of my in (a)—(c), respectively. The midgap MZMs disappear
into the bulk bands at mg = g = £(t; + 1, + 7 /247 + v /243),
defined by the red lines. The EPs m§™ = s(t, +1,) £ /y2 + 2 with
s = =+ are marked by black lines within which Re[E (k)] associated
with H(k) remains gapless as designated by the yellow-shaded re-
gion. (d) The topological phase diagram is depicted on the my — y
plane using nested polarization (vy?_*ﬂ,) Eq. (7). The yellow and green
lines correspond to ng % and 7, respectively, whereas the latter sep-
arates the SOTSC phase (vy”jl,) = 0.5 from the trivial phase W;L') =
0.0. The parameters used here are t, =t, = A, = A, = A = 1.0 and
e =Y =04

topological superconductor (SOTSC). The breakdown of
BBC is resolved with the non-Bloch nature of the NH
Hamiltonian where phase boundaries, obtained under differ-
ent boundary conditions become concurrent with each other
(see Fig. 1). The SOTSC phase is characterized by the non-
Bloch nested polarization. We demonstrate the NH skin effect
where MZMs and bulk modes both display substantial corner
localization (see Fig. 2). We further engineer the regular and
anomalous 7 mode employing the mass drive in high- and
low-frequency regimes, respectively (see Figs. 3 and 4). We
characterize the regular dynamic 0 mode by the non-Bloch
Floquet nested polarization.

Realization of NH SOTSC. We contemplate the following
Hamiltonian of the NH SOTSC, consisting of NH TI Hry(k)
and d-wave proximitized superconductivity [23,64],

_ (Hn(k) —pn A
o= ( I ﬁn(—k>>’ M
where  An(k) = Ur'Hj(k)Ur.  Here,  Hp(k) =

(Aysin ky + iy )oys; + (A sin ky + iyy)oyso + (mo —

ty cos ky — t, €08 ky)oyso = HR(K) + iy,0u5; + ivy0y50,

that preserves ramified time-reversal symmetry (TRS):
UrHi (KU, ! = Hm(—k) and particle-hole symmetry
(PHS"): UcH: (KU, "' = —Hri(—k) with Uy = ops, and
Uc = 0,50, respectively [82]. The d-wave superconducting

paring is given by A(k) = A(cos k, — cos k,); whrereas, y;
and y, introduce non-Hermiticity in the Hamiltonian such
that Hy(k) # H;l(k). The hopping (spin-orbit coupling)
amplitudes are given by ¢, ,, (A, ). Here, mg and p account for
the crystal-field splitting and chemical potential, respectively.
Note that, HE(k) respects TRS: THHE(k)T ! = HE(—k)
and PHS: CHH(k)C™! = —HE(—k) with T =iUrK and
C = UcK. The Hamiltonian (1), thus, takes the following
compact form H(k)=N-T; where, N = {\,sin k, +
Yy, Ay Sin ky + iyy, mo — 1, cos ky — t, cos k,, A(K)},

I' = {r,0,5;, 1,050, T,0,50, T,00S0} With the Pauli matrices 7,
o, and s act on PH (e, h), the orbital (o, 8), and spin (1, |)
degrees of freedom, respectively. Note that, H(k) obeys
TRS and PHS', generated by Uy = 19005y and Uc = 1,008,
respectively. In addition, H (k) preserves sublattice/chiral
symmetry S = t1,00s0 such that SHK)S™' = —H(k).
Now coming to the crystalline symmetries of the model
with 7, =1¢,, A =21, and |y =yl #0, we find
that (k) breaks fourfold rotation with respect to z,
Cy = 1. 7/Y%5: mirror reflection along x, M, = 7,0,
and mirror reflection along y, M, = 1,0,5). As a result,
H(k) preserves mirror-rotation I M, =C4M, for
e =¥y #0, and mirror-rotation II M, = C4M, for
+y, = Fry #0 such that My H(k, k)M = H(ky, k)
and /\/lx_\—,’H(kx,ky)/\/lx_}-,1 = H(—ky,, —k,), respectively (see
the Supplemental Material [117]).

We note at the outset that the definition of Majorana for NH
system is different from its Hermitian analog. The PHS in the
NH case allows us to define a modified Hermitian conjugate
operation such that MZMs obey an effective Hermiticity
M“=c,+¢, I't=i(c,—¢), and Te’ =T [110];
(Cn, ¢,y) denote the creation and annihilation operators of the
Bogoliubov quasiparticles where ¢,, does not correspond to the
Hermitian conjugate of ¢, in the presence of non-Hermiticity.
However, the extraction of real MZMs individually
remains unaddressed out of more than two Majorana corner
modes.

The Hermitian system AP (k) hosts zero-energy Majo-
rana corner modes, protected by the TRS, in the SOTSC
phase for my < |ty +t,| whereas trivially gapped for mg >
|t + | [23]. The NH system becomes defective at EPs
provided |E (kgp)| = O which is in complete contrast to the
Hermitian system with E (k) = 0 at the gapless point. A close
inspection of Eq. (1) suggests that fourfold degenerate energy
bands yield |E(0,0)| =0 [|E(z, )| = 0] for mi* =1, +

e Jr2+y2 Imy* =—t.—ty £ [Jy2+y2]. As a result,

the gapless phase boundaries mj = s(t; + t,) for the Hermi-
tian case are modified in the present NH case with m‘(‘]'i =

sty +1) £ Jr2+ yyz; where s = &+ [see the black lines in

Figs. 1(a)-1(c)]. This refers to the fact that Re[E (k)] is gap-
less for m(;:’_ <my < m(f”’ [see the yellow-shaded region in
Figs. 1(a)-1(c)]. Furthermore, H (k) is expected to be gapped
in the real sector of energy for m F<amy < mar ', hosting
the NH SOTSC phase.

The above conjecture, based on the periodic boundary con-
dition (PBC), is drastically modified when the NH system (1)
is investigated under the OBC. We show |E|, Re[E], and
Im[E] under the OBC with blue points in Figs. 1(a)-1(c),
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FIG. 2. (a) The eigenvalue spectrum for the real-space two-dimensional (2D) system Eq. (1), obeying the PBC in both directions (black
dots), the PBC in y, and the OBC in the x direction (green dots), and the OBC in both directions (blue dots) are depicted on the complex energy
plane. The zero-energy mode, obtained from the OBC, is marked by red dots. (b) Re[E,,] as a function of state index m is displayed where eight
midgap MZMs are highlighted in the inset. (c) The local density of states (LDOS), associated with eight MZMs in (b), show sharp localization
only at one corner. The LDOS for typical bulk states are shown in insets I1 (for E,, = —2.631 839) and 12 (for E,, = —1.738 466 + 0.130 006i).

We use my = 1.0, whereas other parameters are the same as in Fig. 1.

respectively. Surprisingly, the MZMs continue to survive in-
side the yellow-shaded region, i.e., beyond mg = m + and
my = ma”_, until my < || =t + 1, + y2 /232 + yy2/2)»}2,,
depicted by the red line where Re[E] becomes gapless. All
together this suggests the breakdown of conventional BBC
due to the non-Bloch nature of the NH Hamiltonian [87,
91-93]. This apparent ambiguity in BBC affects the calcu-
lation of topological invariants, which we investigate below.
Figure 2(a) demonstrates the complex-energy profile
Im[E] vs Re[E] of Hamiltonian (1) in real space for my <
|/g]. We find the line gap for the NH system irrespective
of the boundary conditions as the complex-energy bands
do not cross a reference line in the complex-energy plane.
The origin, marked with a red dot in Fig. 2(a), indicates
the MZMs under the OBC that are further shown the by
the eight midgap states in Re[E]-m (state index) plot [see
Fig. 2(b)]. Analyzing the local density of states (LDOS) of
the above MZMs, we find sharp localization only at one
corner out of the four corners [100] [see Fig. 2(c)]. This
is a consequence of the mirror-rotation symmetries M., or
M5 even though MZMs spatially coincide. There might
be additional protection from the bulk modes coming due
to the emergent short-range nature of the superconducting
gap [118]. The MZMs are localized over more than a single
corner when M,, or M,; is broken [117]. The MZMs are
also found to be robust against on-site disorder that respects
mirror rotation and chiral symmetries (see the Supplemental
Material [117]). In addition, we remarkably find that the
LDOS of the bulk modes also exhibits substantial corner lo-
calization as depicted in the insets of Fig. 2(c) [87-89]. The
above features, reflecting the non-Block nature of the system,
are referred to as the NH skin effect [87,88]. This is in contrast
to the Hermitian case where only the zero-energy modes can
populate four corners of the 2D square lattice [13,43,47].
Topological characterization. To this end, in order to com-
pute the topological invariant from H(Kk) characterizing the
SOTSC phase under the OBC, we exploit the non-Bloch na-
ture. We need to use the complex wave vectors to describe

open-boundary eigenstates such that k — k' +if with 8; =
vi/A: (i = x,y) [81]. Upon replacing k, , — k;qy — Yy Ay
the renormalized topological mass my, acquires the following
form in the limits &k, , — 0 and y,, — 0,

2 2

r_ Yy Vy
mo—mg—tx—ty—z—)&—ﬁ. (2)

Y
Note that |7itg| = |mg — mg| denotes the phase boundary of the

SOTSC phase as obtained from Fig. 1(b). Employing k" — Kk’
in H(k), i.e., H(k) — H'(kK’), we construct the Wilson loop
operator as [10,66]

Wiw = Fowv—ae, @) Fowiae Frs (3)

from the non-Bloch NH Hamiltonian H'(k’) [119,120]. We
define [Fy o lmn = (VLK + Ae,)|WR(K')), where [WR(K"))
((\II,],;(k')|) represents the occupied right (left) eigenvectors
of the Hamiltonian 7'(k") such that Re[E, (k")] < 0; A; =
2n /L; with L; being the number of discrete points consid-
ered along the ith direction and e; being the unit vector
along the said direction. Note that, the biorthogonaliza-
tion guarantees the following Y [WR(K")) (WL (K')| =T and
(WL (K| WR(K")) = 8,,y; where n tuns over all the energy
levels irrespective of their occupations. The first-order polar-
ization v, , (k) is obtained from the eigenvalue equation for
W, as follows:

Wx,k’ |U§M(k,)> — e—ZJTl'Ux‘;L(k;V) |v)liﬂ(kl)> . (4)

Note that unlike the Hermitian case, here W, y is no longer
unitary resulting in v, ,(k}) to be a complex number [101].
Importantly, [v}, (k")) (v, (K")]) designates the biorthogo-
nalized right (left) eigenvector of W,y associated with u =
1, ... ,fourth eigenvalue. For a (second-order topological)
SOT system, the real part of first-order polarization exhibits a
finite gap in spectra such that it can be divided into two sectors
as j:vx(k;) where each sector is twofold degenerate. Such a
structure of Wannier centres in the non-Bloch case might rely
on the mirror symmetry of the underlying Hermitian Hamil-
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FIG. 3. (a) The real part of the quasienergy spectrum E,,, obtained from Eq. (9) under the OBC, are shown with eight Floquet Majorana 0
modes in the inset. (b) The LDOS, associated with eight MZMs in (a), exhibits substantial localization only at one corner similar to Fig. 2(c).
The LDOS for typical bulk modes with E,, = —0.697 7027 and —0.453 1777 are demonstrated in insets 11 and I2. (c) The topological

phase diagram is depicted on the m; —
polarization (vF Uy =
—0.4, and 2 =

tonian [10,66] . In order to characterize the SOT phase, we
calculate the polarization along the perpendicular y direction
by projecting onto each v, branch. This allows us to employ
the nested Wilson loop as follows [10,66]:

F:‘:UX F:‘:UX . (5)

v, pEu
4 =F v.K+Ave,” y K

»K yK+(L,—1)Ae,

HGI'C [F K ]MIHZ = Zmn[l))];ﬂ](k’ + A ev)] [Fy,k’]mn

(R, ()], with (Bl = (WL + Aye )| WR(K). The

indices w1, € v, run over the projected eigenvectors of

W, x only. We evaluate W * for a given value of k. that is
the base point whereas calculatmg W,k (3).

The nested polarization v} o (k’) can be extracted by solv-

ing the eigenvalue equation for W k”,*,

Ri”*(k') _ 6_27””‘

W:l:vx VM )

K

PR
PRI KDY (6)
The average nested Wannier sector polarization (v i“*) for the
w'th branch, characterlzmg the second SOTSC is given by

ivA _ ZR

We explore the SOT phase diagram by investigating
mod({v i”‘) 1.0) on the mg —y (yx = ¥y = v) plane keep-
ing t, = t} = A, = A, =1 [see Fig. 1(d)]. The blue (brown)
region indicates the SOTSC and the trivial phase. The green
line in Fig. 1(d), separating the above two phases, represents
the phase boundary 7y = 2 + y* as demonstrated in Eq. (2).
On the other hand, the phase boundaries, obtained from bulk
Hamiltonian (1), are found to be m0 =2+ \/iy that are
depicted by yellow lines in Fig. 1(d). Therefore, the topo-
logical invariant, computed using the non-Bloch Hamiltonian
‘H'(K"), can accurately predict the MZMs as obtained from
the real-space Hamiltonian under the OBC [see Fig. 1(c)].
This correspondence for very higher values of y no longer
remains appropriate due to the possible breakdown of Eq. (2).
Even though M, ,’s are broken, (v;‘f,) (v, H,)) yields half-

iux (k/ (7)

y plane where the Floquet SOTSC phase is characterized by the average Floquet nested Wannier sector
= 0.5 (blue region). The phase boundary marked by the green lineis consistent with Eq. (11). We consider my = 2.5, m; =
10 0 such that we start from the trivial phase deep inside the brown region in Fig. 1(c).

integer quantization provided M,, (M) is preserved. Note
that based on mirror rotation and sublattice symmetries, the
NH SOTSC can be shown to exhibit integer quantization
in a winding number similar to NH SOTI [100] (see the
Supplemental Material [117]).

Floquet generation of NH SOTSC. Having studied the static
NH SOTSC, we seek the answer to engineer dynamic NH
SOTSC out of the trivial phase by periodically kicking the on-
site mass term of the Hamiltonian H (k) [Eq. (1)] as [57,64]

mt)y=m Y 8t —rT). 8)

r=—00

Here, m; and T represent the strength of the drive and the time
period, respectively. The Floquet operator is formulated to be

T
Uk, T)=TOexp |:—i/ dt{HKk) + m(t)F3}]
0
= expl—iH (k)T expl—imI's], ©)

where TO denotes the time ordering. Note that mgy >
lte + 1y + /v? + y?| such that the underlying static NH

Hamiltonian H (k) remains in the trivially gapped phase. Hav-
ing constructed the Floquet operator U(k, T'), we resort to
the OBCs and diagonalize the Floquet operator to obtain the
quasienergy spectrum for the system. We depict the real part
of the quasienergy u,, as function of state index m in Fig. 3(a)
where frequency of the drive is higher than the bandwidth of
the system. The existence of eight MZMs is a signature of the
NH Floquet SOTSC phase. The LDOS for the MZMs displays
substantial localization only at one corner in Fig. 3(b). The
insets show the NH skin effect where the bulk modes at finite
energy also have a fair amount of corner localization.

In order to topologically characterize the above MZMs, we
again make use of the non-Bloch form. Instead of the static
Hamiltonian, we derive the high-frequency effective Floquet
Hamiltonian, in the limits 7 — 0 and m; — 0 to analyze the
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FIG. 4. (a) We repeat Fig. 3(a) considering the low-frequency mass kick with 2 = 5.0 where we find eight regular 0 and anomalous
7 modes simultaneously. We show the LDOS associated with Re[E,,] = 0 and Re[E,,] = +m in (b) and (c), respectively. The LDOS for
Floquet bulk modes with E,, = —0.838 779w — 0.085397xi and —0.4719327x are, respectively, depicted in the insets I1 and 12 of (b). We

consider mg = 0, m; = 1.5, and Q2 = 5.0.

situation,

Hrg(K) ~ H(K) + — T +my ;Nﬁn,

(10)

with I'y; = —oys;, ['31 =0y, and I'4y; = —7,0,. Upon sub-
stitution of k — Kk’ + if, the modified mass term in Hp, (k')
reads as

2
/ yx2 y)‘

t 2 m
my =mgy — Ity — 1, — - —= e
0 X y 2)\)26

222 T

an

Evaluating the effective Floquet nested Wannier sector polar-
ization (vy”:f”*) numerically from non-Bloch Floquet operator
U'(K',T) [48,66], we obtain the Floquet phase diagram on
the m;-y plane as shown in Fig. 3(c). The non-Bloch Floquet
operator can be considered as the dynamic analog of the non-
Bloch NH Hamiltonian H’(K’). In particular, we use biorthog-
onalized [WR (k")) ((¥F(K)|), representing the occupied right
(left) quasistates of U’(kK’,T) with quasienergy —m /T <
Re[u] < 0O to construct the Wilson loops Wka' for the driven
case. Following the identical line of arguments, presented

. F,+v, . F,%v, _
for the static case, Wi 18 obtained from e e =

Y [VEE (K + AT [F  Ina[VE R (K1 with [FF L =
(W, (K + Aye,) ¥ (k) and |v£’/f(k’)) ((vi*k(k’)D desig-
nates the biorthogonalized right (left) eigenvector of Wka,.
Interestingly, this is similar to the static phase diagram where
the phase boundary is accurately explained by Eq. (11). We
further analyze the problem for the lower-frequency regime
to look for anomalous Floquet modes at quasienergy Re[u] =
4+ [57,66]. We depict one such scenario for Q = 2x /T =
5.0 in Fig. 4(a) where eight anomalous 7 modes appear si-
multaneously with regular eight 0 modes. The corresponding
LDOS for the 0 mode and the = mode are shown in Figs. 4(b)
and 4(c), respectively. Interestingly, the 0 mode and the =x
mode populate different corners of the system. As a signature
of the NH skin effect, we show the LDOS for two bulk
states in the insets I1 and 12 of Fig. 4(b). The localization
profile of the zero-energy states and bulk states are unique
to the NH system that cannot be explored in its Hermitian
counterpart.

Discussions. The number of MZMs can be tuned in our
case by the application of magnetic field similar to the
Hermitian SOTSC phase [64]. The long-range hopping pro-
vides another route to enhance the number of MZMs that
can, in principle, be applicable for the non-Hermitian case
as well [121,122]. Interestingly, Floquet driving delivers an
alternative handle to generate long-range hopping effectively
out of the short-range NH model such that the number of
MZMs are varied (see the Supplemental Material [117]). In-
terestingly, Hermitian and non-Hermitian phases belong to the
Dirac and non-Hermitian Dirac universality classes [123,124].
In the case of HOT phases, one expects different criti-
cal exponents with respect to the usual Dirac model. The
breakdown of BBC and skin effect are intimately related
to such a non-Hermitian Dirac universality class. The edge
theory, computed from the Hermitian HOT model, is modi-
fied due to the non-Hermiticity with the possible non-Bloch
form. Given the experimental realization of spin-orbit cou-
pling [125,126], non-Hermiticity [127,128], and theoretical
proposals on topological superfluidity [129,130] in the optical
lattice, we believe that the cold atom systems might be a
suitable platform for the potential experimental realization of
our findings [74,131,132]. However, we note that the super-
conductivity might be hard to achieve in the NH setting.

Summary and conclusions. In this Letter, we consider 2D
NH TI, proximized with d-wave superconductivity, to inves-
tigate the emergence of NH SOTSC phase. From the analysis
of EPs on the bulk NH Hamiltonian under the PBC, one
can estimate the gapped and gapless phase in terms of the
real energies (see Fig. 1). By contrast, the MZMs, obtained
from the real-space NH Hamiltonian under the OBC, do not
immediately vanish inside the bulk gapless region (see Fig. 2).
This apparent breakdown of the BBC can be explained by the
non-Bloch nature of the NH Hamiltonian that further results in
the MZMs residing at only one corner whereas the bulk modes
populate the boundaries, whereas the latter is dubbed as NH
skin effect. We propose the nested polarization for topologi-
cally characterizing the MZMs upon exploiting the non-Bloch
form of the complex wave vectors. This resolves the anomaly
between the phase boundaries, obtained from the OBC and
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PBC, in the topological phase diagram. Finally, we adopt a
mass-kick drive to illustrate the Floquet generation of NH
SOTSC out of the trivial phase and characterize it using non-
Bloch Floquet nested Wannier sector polarization (see Fig. 3).
In addition, we demonstrate the emergence of anomalous
mode following such a drive when the frequency is lowered
(see Fig. 4). The mirror-symmetries M, , play crucial roles

in characterizing the anomalous 7 modes [48,66]. Therefore,
such characterization in the absence of mirror symmetries is a
future problem.
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