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Disorder-induced dynamical Griffiths singularities after certain quantum quenches
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We demonstrate that in a class of disordered quantum systems the dynamical partition function is not an
analytical function in a time window after certain quantum quenches. We related this behavior to rare and large
regions with atypical inhomogeneity configurations. We also quantify the strength of the associated singularities
and their signatures in experiments and numerical studies.
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Phase transitions (PTs) are among the most intriguing phe-
nomena in nature. When crossed, the macroscopic properties
of matter change fundamentally, often requiring new concepts
for a proper description [1]. In thermodynamic equilibrium,
PTs are on firm theoretical grounds as they occur whenever
a zero of the partition function touches the real-temperature
(or field) axis [1,2]. Consequently, thermodynamic observ-
ables become nonanalytic functions of temperature/field at
the transition point. Notably, these Yang-Lee-Fisher (YLF)
zeros were recently measured experimentally [3,4].

Inhomogeneities, which are nearly ubiquitous in exper-
iments, play an important role in equilibrium PTs. For
instance, even the smallest amount of them can change the
singularities of a critical system [5], smear the PT [6,7],
or even destroy it [8]. Another remarkable inhomogeneity-
induced phenomenon is the stabilization of a Griffiths phase
(GP): an extended region in the phase diagram surrounding
a phase-transition manifold where the free energy is nonan-
alytic [9,10]. Counterintuitively, the nonanalyticity is due to
so-called rare regions (RRs)—large and rare regions in space
with atypical configurations of inhomogeneities—which pro-
vide YLF zeros arbitrarily close to the real-temperature axis
[9,11,12].

Over the past decades, the influence of the RRs on many
observables has been quantified in a multitude of strongly in-
teracting systems ranging from classical and quantum models
in equilibrium to nonequilibrium reaction-diffusion models
(for reviews, see Refs. [13–15]). In the associated GPs, the
RRs endow many observables with singular behavior in the
long-time/low-frequency regime. This common feature is due
to the RRs’ long relaxation times [16–20].

With the growing capacity of experimentally accessing
the time evolution of closed quantum many-body systems
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[21,22], it then became natural to inquire whether the RRs
play any important role in their time evolution. Clearly, the
notion of slow RRs at equilibrium does not apply and thus
their importance cannot be anticipated. Evidently, obtaining
a result on the RR effects in a general out-of-equilibrium
situation is desirable but very unlikely to exist. We thus restrict
ourselves to the simpler case of quantum quenches which
already allows the study of fundamental phenomena such as
entanglement spreading and thermalization [23–25]. Here, the
system’s initial state is |ψ0〉, the ground state of H0 ≡ H (h0),
and time evolved according to the postquench Hamiltonian
H ≡ H (h), with h being a tuning parameter. In this context,
the concept of dynamical quantum phase transitions (QPTs) is
quite useful [26] because an analogy with equilibrium PTs can
be made. The linking quantity is the dynamical free energy

f (t ) = −V −1 ln |Z (t )|2, (1)

where Z (z) = 〈ψ0|e−iHz|ψ0〉 is the return probability ampli-
tude after the quench, z = t + iτ is the complex time, and
V is the system volume. Z is the dynamical analog of the
equilibrium partition function. As in equilibrium PTs, its zeros
accumulate in lines or areas on the complex-time plane and,
in the thermodynamic limit, may touch the real-time axis.
When this happens, a dynamical QPT occurs [26–32] and has
been experimentally verified in different quantum simulator
platforms [33–37] (for a review, see Ref. [38]).

In this Letter, we use the unifying concept of YLF zeros to
show that the RRs dominate the system’s early-time dynamics
for all quenches which do not cross the bulk equilibrium QPT
but do cross the RR local QPT, i.e., the quantum quenches are
from a conventional phase to the nearby GP [see Fig. 1(a)].
For those quenches, the RRs endow Z (z) with YLF zeros
arbitrarily close to the real-time axis. As in equilibrium GPs,
these YLF zeros are spread over an area on the complex-time
plane with the associated density of zeros depending on the
details of the disorder variables in H [see Fig. 1(b)]. We
thus propose the term dynamical quantum Griffiths phase to
designate the real-time axis interval intersected by the YLF
zeros [see Fig. 1(c)].

The reasoning behind our result is as follows. After the
quench, the bulk remains nearly in its ground state since its
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FIG. 1. Schematics of (a) the equilibrium phase diagram and
the class of quantum quenches studied: from a point far from the
quantum phase transition to a point in the nearby Griffiths phase.
(b) The rare-region-induced zeros of the dynamical partition function
Z , and (c) the associated dynamical free energy f (solid line). Each
set of zeros (stars of a given color) and the corresponding dynamical
free energy fRR (dashed line) are due to a single rare region. The
singular part of f is a simple superposition of all fRR. The time
window tA < t < tB is the dynamical quantum Griffiths phase.

QPT was not crossed. The RRs, however, are highly excited.
Because the RRs and the bulk are in different phases, these
excitations do not rapidly decay. Thus, meanwhile, the RRs’
dynamics is decoupled from the bulk’s in a sense that will
become precise later. Consequently, two sets of YLF zeros
appear, one provided by the bulk and the other by the RRs.
Those from the bulk are far from the real-time axis and thus
only provide analytical contributions to f (t ). Those from the
RRs, however, are arbitrarily close to the real-time axis and
therefore are responsible for the nonanalyticities of f (t ). In
addition, we show that this singular behavior can be well
approximated by that of completely decoupled RRs with open
boundary conditions undergoing the same quantum quench.

We remark that, differently from the known cases in the
literature, the RRs in dynamical QPTs dominate the short-
time dynamics. This is exciting because it allows for an easier
identification of the RRs’ effects in numerical studies and in
experiments.

Finally, we notice that quenched disorder effects on dy-
namical QPTs were studied in a variety of models [39–44].
These studies, however, did not focus on the RR-induced
effects.

In the remainder of this Letter, we derive our results from
an explicit model Hamiltonian, discuss their generality and
extensions, and provide concluding remarks.

Consider the transverse-field Ising chain

H = −
L∑

i=1

Jiσ
z
i σ z

i+1 − h
L∑

i=1

σ x
i , (2)

where σ i are Pauli matrices, Ji > 0 are the ferromagnetic
coupling constants (which, due to inhomogeneities, are site
dependent), and h > 0 is the transverse field and plays the role
of the tuning parameter of H (h). We consider chains of L sites
long with periodic boundary conditions σL+i = σ i. The model
has two zero-temperature phases: the ferromagnet (h < hc)
and the paramagnet (h > hc) separated by a quantum critical

point at hc = Jtyp, where Jtyp = eln J is the geometric mean of
the coupling constants [45].

The clean system (Ji = J) can be solved analytically using
standard methods [46]. The return probability amplitude (1)
after the quantum quench h0 → h (with h0 > hc) is

Z (z) = e−iE0z
∏

0<kn<π

(
1 − (1 − εkn )(1 − e−4iωkn (h)z )

2

)
, (3)

where E0 = −∑L
n=1 ωkn (h) is the ground-state energy of

the postquench Hamiltonian, the momenta kn = (2n − 1)π
L ,

n = 1, . . . , L, ωk (h) = √
h2 − 2hJ cos k + J2 is the disper-

sion relation, and εk = εk (h, h0) ≡ [hh0 − J (h0 + h) cos k +
J2]/[ωk (h)ωk (h0)]. The YLF zeros of (3), z∗ = t∗ + iτ ∗, are

t∗
m,n = (2m + 1)π

4ωkn (h)
and τ ∗

n =
ln

( 1+εkn (h,h0 )
1−εkn (h,h0 )

)
4ωkn (h)

, (4)

where m ∈ N defines different accumulation lines of zeros
(for a graphical illustration, see Supplemental Material [46]).
These lines pierce the real-time axis if and only if the equilib-
rium QPT is crossed by the quantum quench, i.e., if and only if
(h − hc)(h0 − hc) < 0 in the model (2). In the following, we
numerically demonstrate that even a single RR dramatically
changes this scenario.

Unfortunately, there is no analytical solution for the non-
homogeneous case. We then compute Z (z) in (1) via exact
numerical diagonalization and find its YLF zeros z∗ using
the standard secant method [46]. For definiteness, we set the
couplings in the Hamiltonian (2) to Ji = JB (the bulk cou-
plings) everywhere except inside a RR where Ji = JRR for
1 � i � LRR − 1. The fact that we are considering a compact
RR is of no consequence for our purposes. Later, we discuss
more general profiles. For simplicity, we consider quantum
quenches from h0 = ∞ to a finite h. Thus, |ψ0〉 = ⊗L

i=1| →〉,
with σ x| →〉 = | →〉, is a simple product state. We want to
study quenches that do not cross the bulk QPT, and thus
h > JB. In the following numerical study, we set h = 5JB.
Other values only produce quantitative changes and will be
shown elsewhere.

We show in Fig. 2(a) the dynamical free energy for the
homogeneous case JRR = JB for a chain of only L = 30 sites
long (for the sake of clarity) with periodic boundary condi-
tions. The resulting curve (dotted line; notice it is multiplied
by a factor of 10) is completely smooth and analytic as
expected. The corresponding YLF zeros Eq. (4) are shown
in Fig. 2(b) as open symbols. As is well known [26], they
accumulate in lines far from the real-time axis. For the time
window considered, only the first two accumulation (dashed)
lines appear. Increasing JRR gradually (in steps of 0.1h up to
3h and considering, for the sake of clarity, a rare region of
only LRR = 8 sites long), the zeros move on the complex-time
plane [see gray dots in Fig. 2(b)]. Analyzing their trajectories,
we verify two distinct sets of zeros: one that remains in the
upper half of the complex-time plane and the other which
migrates to the vicinity of the real-time axis. The latter set of
zeros accumulate in lines which pierce the real-time axis for
JRR > h. For the case JRR = 3h, we plot the corresponding
f (t ) in Fig. 2(a) (red solid line). The corresponding zeros
are shown in Fig. 2(b) as solid symbols. The developing
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FIG. 2. (a) The dynamical free energy f as a function of the
real time t for three different chains after the quantum quench from
h0 = ∞ to finite h. The first chain (black dotted line) is homoge-
neous, L = 30 sites long with periodic boundary conditions, and has
couplings JB = h/5. The second chain (red solid line) is identical
to the first one except that it contains a RR of size LRR = 8 inside
which the couplings are JRR = 3h. The third chain (blue dashed line)
is homogeneous, LRR sites long with open boundary conditions, and
has couplings JRR. (b) The corresponding Yang-Lee-Fisher zeros of
Z (z) for these three chains: open symbols, solid symbols, and ×
symbols, respectively. The zeros’ trajectories of the second chain
(when changing JRR from h/5 to 3h) are given by the gray dots (see
text).

singularities in f (t ) are in one-to-one correspondence with the
zeros close to the real-time axis.

Our interpretation of the latter set of zeros is that the
unitary dynamics of the RR is essentially decoupled from the
bulk. The reasoning is as follows. The bulk is gapful and is
locally in a different phase from the RR. The RR excitations
(kinks) have a different nature from the bulk’s (spin flips).
Therefore, the quench-induced excitations of the RR do not
immediately decay into the bulk.

To give support to this interpretation, we compute the dy-
namical free energy fRR and the corresponding YLF zeros of
a decoupled RR with open boundary conditions undergoing
the same quantum quench: the blue dashed line and violet
× symbols in Figs. 2(a) and 2(b), respectively. We verify
that fRR(t ) accurately reproduces the singular part of f (t ),
the difference being due to the analytical bulk’s contribution.
Interestingly, we verify a one-to-one correspondence between
the set of zeros of Z (z) near the real-time axis and the zeros of
ZRR(z). The differences between them vanish exponentially as
JRR increases [46].

We now further explore the consequences of our interpreta-
tion: (i) Different RRs are independent (if sufficiently far from
each other) and (ii) the postquench excitations are localized
inside the RRs (for sufficiently short times). The reasoning
behind (i) is because the bulk is practically in its ground
state and thus its ground-state correlation length ξ is still a
well-defined quantity.

FIG. 3. (a) The mean energy density above the ground state δEi

and (b) the corresponding density current Ji as a function of the real
time t for each lattice site i (see text).

To give evidence of the above statements, we study
the time evolution of the mean energy density above
the ground state δEi = 〈ψ (t )|Ei|ψ (t )〉 − 〈φGS|Ei|φGS〉 (where
Ei = − 1

2 Ji−1σ
z
i−1σ

z
i − hσ x

i − 1
2 Jiσ

z
i σ z

i+1 and |φGS〉 is the
ground state of the postquench H) and the associated density
current Ji = hJi−1〈ψ (t )| − σ z

i−1σ
y
i + σ

y
i−1σ

z
i |ψ (t )〉 [46]. We

consider the same quench (from h0 = ∞ to h) in a chain of
L = 60 sites long with periodic boundary conditions where
the bulk coupling is JB = 0.2h. The chain has two RRs. One is
20 sites long with coupling constant JRR,1 = 2h, and the other
is only 5 sites long with couplings JRR,2 = 1.5h. In Fig. 3, we
plot the δEi and Ji as a function of time.

Clearly, for the time window studied, the excitations are
well localized inside the RRs and the bulk remains in its
ground state carrying no energy current. We have also verified
[46] that the singular part of f (t ) and the corresponding YLF
zeros are well described by those of the same RRs undergoing
the same quantum quench but decoupled from the bulk.

Having demonstrated that (i) the RR dynamics is effec-
tively decoupled from the bulk and (ii) that the dynamics of
sufficiently far apart RRs are essentially independent from
each other, we can readily understand the origin and quantify
the nonanalyticities of f (t ) for any quantum quench which
does not cross the bulk QPT. All the singularities come from
sufficiently large RRs which, independently, provide YLF
zeros accumulating in lines piercing the real-time axis. Since
the time instant in which these lines pierce the real-time axis
depends on the microscopic details of the RRs, the YLF zeros
will be generically distributed over an area of the complex-
time plane. The intersection of this area with the real-time axis
defines the dynamical quantum Griffiths phase (see Fig. 1).

Evidently, besides identifying the physical mechanism be-
hind the nonanalyticities in Z (t ), it is also desirable to quantify
it. From the Weierstrass factorization theorem, the singular
part of f (t ) is [1,2,38]

fsing(t ) ∝
∑
m,α

ln
∣∣t − t∗

m,α

∣∣ →
∫

dt∗g(t∗) ln |t − t∗|. (5)

Here, t∗
m,α is the mth real-time YLF zero due to the αth RR.

In the thermodynamic limit, the sum in Eq. (5) is replaced by
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an integral weighted by the distribution of zeros g(t∗). As no-
ticed by Fisher [1], fsing is as a two-dimensional electrostatic
potential due to point charges at t∗. The nonanalyticity of f (t )
is thus encoded in the distribution g(t ), whose nonanalyticities
are inherited from the distribution of the random variables in
H . Naturally, an example that can be worked out analytically
is desirable. This is provided by the percolating case in which
the couplings are vanishing with probability p and equal to
Jα > 0 with probability 1 − p. Here, Jα is a random variable
distributed according to P(J ). For the quantum quench h0 =
∞ → h = 0+, the dynamical free energy is [46]

f = −L−1
L∑

k=1

ln cos2 (Jkt ) → −(1 − p)ln cos2 (Jt ), (6)

where the thermodynamic limit was taken in the last pas-
sage and (· · · ) = ∫

dJP(J )(· · · ). The real-time YLF zeros are
t∗
m,α = (2mα + 1)π/Jα . If Jα is uniformly distributed between

J1 and J2, the nonanalyticities of P(J ) at J = J1(2) become
nonanalyticities of f (t ) at the time instants t c

m,1(2) = (2m1(2) +
1)π/J1(2). Notice that these are the only time instants in which
f (t ) is nonanalytic, even though there is a continuum of YLF
zeros in the time window t c

m,2 < t < t c
m,1. This is in close

correspondence with the nonanalyticities of the electrostatic
potential due to a continuous distribution of charges. The
associated singularities are only log-infinite derivatives of f
at the instants t c

m,2 and t c
m,1. At all other time instants, f is

locally analytic. At first glance, this seems to imply a nearly
undetectable nonanalytical behavior (just as classical Grif-
fiths singularities). However, in numerical studies, the lack
of a dense accumulation of real-time zeros yields a highly
fluctuating free energy in that time window, as illustrated in
Fig. 1(b). Different convergence schemes or precisions will
produce highly different numerical results in the dynamical
quantum Griffiths phase. We expect an analogous behavior
in the current experiments [26,33–37] of ultracold atoms and
other quantum simulators where the total number of degrees
of freedom is far from the thermodynamic limit. In electrostat-
ics, the same effect occurs if the probe of the electric field is
able to distinguish between neighboring point charges. Math-
ematically, this is quantified by the Euler-Maclaurin formula
of the difference between the sum and integral in Eq. (5), or,
equivalently, by the difference between the sample average
(sum) and the distribution average (integral) in Eq. (6).

In summary, we have shown that RRs play a fundamen-
tal role in the early-time dynamics of strongly interacting
quantum systems after quantum quenches which cross the RR
QPT but not the bulk QPT. In that case, the quench-induced
excitations are confined in the RRs while the bulk remains
nearly in its ground state. As a result, observables such as
the dynamical free energy (1) become nonanalytic functions
of time in the thermodynamic limit. The nonanalyticities are
due to RR-induced YLF zeros accumulating in lines piercing
the real-time axis. Evidently, it is desirable to know whether
this situation applies to other model systems. For short times,
we expect it to be quite general when the bulk is gapped
since there will be infrequent resonances between the RRs
and the bulk and thus the excitations remain confined. For a
gapless bulk, the RR relaxation time may still be compara-
tively long since the nature of its excitations is fundamentally
different from the bulk’s. In other words, the quench-induced
excitations in the RRs may not decay rapidly into the bulk due
to the conservation of emergent quantum numbers. We stress
that, counterintuitively, the RR-induced singular behavior of
the dynamical free energy appears at short timescales. This
fact makes the RR-induced singularities easier to be identified
in numerical studies (such as time-dependent density matrix
renormalization group) and in quantum simulator experiments
(before the interactions with the environment spoil the unitary
dynamics).

Notice that the nonequilibrium phenomenon here studied is
of short timescales. Studying (the long-time physics of) ther-
malization after the quantum quenches here considered (when
integrability-breaking terms are present) by quantifying how
the excitations decay into the bulk and relating this to the
position of the YLF zeros is an interesting task left for the
future.

Finally, we remark that our results also apply to quantum
annealing [47] from h0 to h when the RR QPT is crossed. If
the RR is sufficiently large or the annealing is sufficiently fast,
excitations are generated and confined inside the RR. Thus,
RRs play an important role for adiabatic quantum computing.

We acknowledge instructive discussions with M. Heyl, D.
Luitz, R. Moessner, and M. Vojta. We also acknowledge the fi-
nancial support of the Brazilian agencies FAPEMIG, FAPESP,
and CNPq.
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