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Locality of spontaneous symmetry breaking and universal spacing distribution
of topological defects formed across a phase transition
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The crossing of a continuous phase transition results in the formation of topological defects with a density
predicted by the Kibble-Zurek mechanism (KZM). We characterize the spatial distribution of pointlike topolog-
ical defects in the resulting nonequilibrium state and model it using a Poisson point process in arbitrary spatial
dimensions with KZM density. Numerical simulations in a one-dimensional ¢* theory unveil short-distance
defect-defect corrections stemming from the kink excluded volume, while in two spatial dimensions, our
model accurately describes the vortex spacing distribution in a strongly coupled superconductor indicating the

suppression of defect-defect spatial correlations.
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Introduction. Spontaneous symmetry breaking in finite
time leads to the formation of topological defects. The dynam-
ics of a continuous phase transition, classical or quantum, is
characterized by the breakdown of adiabaticity resulting from
critical slowing down. Facing a degenerate vacuum manifold,
spatially separated regions of the driven system make inde-
pendent choices of the broken symmetry. Topological defects,
such as domain walls in a ferromagnet or vortices in a su-
perconductor, form at the interface between adjacent domains
characterized by a homogeneous order parameter. Exploit-
ing equilibrium scaling theory, the Kibble-Zurek mechanism
(KZM) predicts the average number of spontaneously formed
topological defects as a function of the quench time 7y in
which the phase transition is crossed, e.g., by modulating a
control parameter A, such as the temperature or an external
magnetic field, across its critical value A, [1-5].

The KZM scaling has been verified in a variety of
platforms, studying soliton formation in cigar-shaped Bose-
Einstein condensates [6] and kinks in trapped ions [7-9], with
moderate system sizes and inhomogeneous samples [10]. The
scaling of the vortex density has been established in hexagonal
manganites [11,12], Bose gases [13,14], and unitary Fermi
gases [15]. Across quantum phase transitions, which can also
be described by the KZM [16-20], the universal scaling has
been probed using two-level systems [21-25], D-Wave ma-
chines [26-28], and Rydberg gases [29].

A crucial ingredient of the KZM is the local character of
spontaneous symmetry breaking. Kibble proposed that de-
fects formed according to the geodesic rule, in a probabilistic
fashion [1], a feature that has been explored by merging
experimentally independent Bose-Einstein condensates [30].
This observation has motivated the unraveling of universal
signatures in critical dynamics that lie beyond the scope of
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the KZM, e.g., by focusing on the full counting statistics of
topological defects [25,27,28,31-36].

What kind of spatial correlations between topological de-
fects are consistent with the locality of symmetry breaking?
Pioneering works by Halperin [37] and Liu and Mazenko [38]
focused on growth dynamics and phase-ordering kinetics. In
these studies, the characterization of correlations between
topological defects was pursued using two-point correlation
functions, leaving room for more stringent tests involv-
ing higher-order correlations. An important precedent of
our work is the observation by Zurek that spatial defect
statistics can be used to characterize spontaneously formed
supercurrents [39].

In this Research Letter, we explore the extent to which
spontaneous formation of topological defects is correlated at
different locations. Specifically, we focus on the spacing dis-
tribution of topological defects generated during the crossing
of a continuous phase transition in finite time. We combine
elements of stochastic geometry and the KZM to describe the
formation of topological defects by a Poisson point process
and put forward a universal prediction for the defect spacing
distribution which varies with the spatial dimension. This the-
ory is corroborated by numerical simulations of kink statistics
in a one-dimensional ¢* theory and vortex formation in a
two-dimensional holographic superconductor.

Universal defect spacing distribution. At equilibrium, the
correlation length £ and the relaxation time 7 diverge ac-
cording to the power laws & = &)/|e|™" and 7 = 109/|€|™*"
as a function of the distance € = (A — A.)/A. to the critical
point A.. Here, v denotes the the correlation-length critical
exponent, and z is the dynamic critical exponent. For a linear
quench of the form € = t/7p, the KZM [1-4] sets the aver-
age distance between topological defects equal to the KZM
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correlation length
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Thus the typical density of topological defects is p o £~ =
& d(l’o / TQ)% in d spatial dimensions.

We consider a Poisson point process associated with the
random distribution of N pointlike topological defects in a
volume V with homogeneous density p fixed by the KZM.
We use the well-known fact that a (d — 1)-dimensional sphere
of radius R enclosing a d-dimensional ball B;(R) = {x € R? :
[lx|l < R} has surface S;_1(R) and volume V;(R) given by [40]
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in terms of the gamma function I'(x). The distribution of N

topological defects in volume V = V,;(R) leads to an effective

volume occupied by each topological defect
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We choose the proportionality constant such that
Va(R) = Nvg = NVy(€), @

e.g., by considering each defect at the center of a d-
dimensional ball of radius £, which implies R = Nﬁé‘.

The defect spacing distribution can be estimated taking as
a reference a given defect and determining the probability
of finding any of the other (N — 1) defects at a distance be-
tween s and s + ds, with the remaining (N — 2) defects being
located farther away,

N-2
P(s)ds = (N — 1)S"1(S)ds[1 _ V"(S)} . 6)

Va(R) Va(R)

We note that the above expression for P(s) fulfills the normal-
ization condition fOR P(s)ds = 1. This distribution generalizes
the familiar distribution for a Poissonian random process on a
plane, studied, e.g., in the context of random matrix theory.
Making use of (4) and introducing the dimensionless scaled
spacing X = s/R = s/(Nﬁé), one finds the spacing distri-
bution of topological defects P(s)ds = d(N — )X9~'[1 —
X41¥=2dX. We shall focus on the large-N limit, in which the
normalized distribution reads

P(s)ds = dNX41e N gx. (©6)

The mean spacing, (s) = fOR P(s)sds, is given by

| A
(s) = dN”%é/ X9 VX gx ~ §r<l),
0 d \d
with the correlation length £ in Eq. (1) set by the KZM. To
bring out the universal character of P(s) with the quench time,
it proves convenient to introduce the dimensionless defect
spacing in units of the mean S = s/(s). Using it, the normal-
ized defect spacing distribution in the large-N limit takes the
form

. 1
P(S) =dris?=le s =21 = —F<E>, (7

FIG. 1. Universal defect spacing distribution. (a) Schematic
representation of N pointlike topological defects enclosed in a two-
dimensional ball B,(R) with radius R. (b) Distribution P(S) of the
spacing between topological defects as a function of the dimension-
less spacing normalized to the mean, S = sd/ [é F(i )], where s is the
shortest distance between defects, d denotes the spatial dimension,
and £ is the nonequilibrium correlation length predicted by the KZM,
which exhibits the universal power-law scaling with the quench time
in Eq. (1). In one dimension the distribution is exponential, while
P(S) takes the form of a Wigner-Dyson distribution in d = 2.

which is thus independent of the quench time 7. This distri-
bution is normalized in the domain S € [0, 00), has unit mean
(S) = fooo SP(S)dS = 1, and has a maximum at Sy, = (1 —
D/ra + 1) with value P(Spax) = (d — 1)Tdies™'T(1 +
5). In addition, the fluctuations in the defect spacing as quan-
tified by the variance read AS? =T'(34)/I(1+ 1)* — 1,
diminishing with increasing spatial dimension d and van-

ishing as d — oo. Specifically, we note that for spatial
dimensions d = 1,2,3,r =1, /7/2, iT(3), and

d=1, P@S)=e75, ®
d=2, P(S)= %Se—%sz’ ©
d=3, PS)=4§T(})’se 7" 0

with fluctuations AS? ~ 1,0.27, and 0.13, respectively. These
distributions are plotted in Fig. 1. For d = 1 the distribution is
exponential, familiar in the context of the energy-level spacing
of integrable systems. For d = 2, the defect spacing distribu-
tion is given by the well-known Wigner-Dyson distribution,
familiar from random matrix theory. For arbitrary d, it is
known as the Brody distribution in the context of quantum
chaos [41,42].

Point random processes assume no correlations between
defects beyond the fact that the density is homogeneous
throughout the system. As a result, they provide a structureless
model, a natural reference one in the context of the KZM. We
next explore the extent to which the spontaneous formation
of topological defects can be described by point random pro-
cesses with KZM density by considering some paradigmatic
models.

Example 1: Spontaneous 7., breaking in a one-dimensional
system. Let us consider a paradigmatic scenario of sponta-
neous symmetry breaking to explore the defect-defect spacing
distribution following the crossing of a phase transition in
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finite time: a Ginzburg-Landau theory with real field ¢ un-
dergoing Langevin dynamics. The validity of the KZM in this
setting has been reported in Refs. [43—45]. In addition, the
universality of the number distribution of topological defects,
beyond the KZM, has also been established in Ref. [33].
We consider a generic Ginzburg-Landau potential given by
Vip) = %(qﬁ“ —2€¢? + 1). The parameter € measures the
distance from the phase transition. Minimizing V(¢) with
respect to ¢ gives two possible minima given by ¢, () =
{0, £4/€(t)}. A second-order phase transition occurs if €
changes its sign. When € < 0, the field ¢ fluctuates around
its expectation value (¢) = 0. However, when € > 0, the field
¢ settles locally around one of two minima (¢) = +./e. We
consider a quench described by
e(t):)Lj+L|)\.f_)\i|. an
0]
The system is in contact with a thermal reservoir and obeys
the Langevin equation

b+ 1 — dup + 34V (9) = E(x, 1),

where n > 0 is a global damping constant. The noise &(x, t)
is a real Gaussian process with zero mean and autocorrelation
function (£ (x, 1)E(x', ")) = 2nT(x — x')8(t — t’). Details of
the numerical integration to determine trajectories of the
Ginzburg-Landau real field ¢ can be found in the Sup-
plemental Material [46]. We simulate the dynamics in the
overdamped regime and fix the temperature 7 = 0.01 and
n =1 (the same regime of parameters used in Ref. [43]).
The stochastic evolution is described using a computational
numerical grid from xpi, = 0 to xmax = 500 given by 5000
partitions. The correlation-length critical exponent takes the
mean-field value v = 1/2. In the overdamped regime, the
dynamic critical exponent is z = 2. The KZM prediction for
the typical size of the domains is thus § = &o(to/ ro)%, numer-
ically confirmed in Refs. [33,43].

The distribution P(S) of the spacing between adjacent
topological defects, normalized to the mean, is shown in
Fig. 2. The tail of distribution for S > 1.5 is well described
by the exponential function exp(—S). However, important
deviations are manifested for smaller values of S. In particular,
P(S) is highly suppressed for small values of S, while an en-
hancement of the probability for § =~ 1 is observed. This is to
be expected as one dimension enhances correlations between
topological defects. Furthermore, in one spatial dimension, a
kink can only be surrounded by antikinks. Coarsening by the
annihilation of kink and antikink pairs is thus unavoidable
even in the KZM scaling regime of the dynamics for small
lattice spacing. In addition, topological defects such as kinks
are actually not pointlike and have a finite healing length.

One may wonder whether the distribution can be repro-
duced by considering the excluded volume of each defect.
To this end, we consider the spacing between randomly
distributed disks in one spatial dimension, characterized by
Torquato, Lu, and Rubinstein (TLR). In terms of the packing
fraction ¢ = No /L € [0, 1] for N topological defects of ra-
dius o, the TLR spacing distribution reads [47,48]

1+¢ 1+¢ 2¢
m“"[‘m“m

12)

Prir(S) = i| (13)
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FIG. 2. Statistics of kinks spontaneously formed in a one-
dimensional ¢* theory. (a)~(c) A typical nonequilibrium field
configuration ¢(x) supporting kinks is shown, when the transition
is crossed at different quench times 7o = 10!, 10%, and 10°. The
position of every kink is represented by a red dot over ¢(x) = 0.
(d) Scaling of the number of zeros as a function of the quench time.
A fitting to the scaling of the average number of zeros with the
quench time of the form (number of zeros « 7, Bramy yields a value
of the power-law exponent Sxzv = 0.248 &£ 0.004 in agreement with
the KZM prediction dv/(1 +zv) =1/4 for d =1, v =1/2, and
z = 2. (e) Distribution P(S) of the spacing between nearest-neighbor
topological defects. While the details of the distribution are well
reproduced by an exponential decay, there are strong short-distance
suppression of P(S) and bunching at a spacing comparable to the
mean, S ~ 1. Deviations are captured by the TLR distribution with
¢ = 0.11. For each value of 7y, data are collected from 10 000
independent trajectories.

and vanishes identically for small spacing values when
S <2¢/(1 4+ ¢). The comparison with this distribution is
shown as well in Fig. 2. The TLR distribution captures accu-
rately the corrections to the ideal distribution that arise at all
distances from the excluded volume, with a weak dependence
of the optimal packing fraction ¢ on the quench time; see
Supplemental Material [46] for additional details.

Example 2: Spontaneous U(1) breaking in a two-
dimensional strongly coupled superconductor. We next turn
our attention to an example in one higher spatial dimension
and characterize the defect spacing distribution of spon-
taneously formed vortices in a newborn strongly coupled
superconductor. The latter can be described using holographic
duality, which makes use of a gravitational theory with one
additional spacelike dimension [49]. Holographic quantum
matter provides a natural setting to explore the role of strong
coupling in topological defect formation and has been used
to establish the validity of the KZM in this regime, up to
subleading corrections in the quench time [34,50-55].

The setup and numerical scheme we adopt are described
in detail in the Supplemental Material [46], which includes
Refs. [56-60]. We consider the paradigmatic Lagrangian of
the Maxwell-complex scalar model for a holographic super-
conductor [58],

L=—1F,F" — DU —m*|¥ ], (14)

where D = V — iA with A being the U(1) gauge field and ¥
being the complex scalar field (using units withe =c =h =
kg = 1). The equations of motion read D, D*W¥ — m2v =0,
V F* =i(W*D"¥ — W(D"W)*). The ansatz we take is
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FIG. 3. Statistics of vortices in a newborn strongly coupled su-
perconductor. (a)—(c) Spontaneously formed vortices in a newborn
holographic superconductor are shown in density plots of the or-
der parameter for three different quench rates. The average vortex
number decreases with the quench rates. (d) The dependence of the
average vortex number on the quench time is consistent with a power-
law scaling, with fitted value Bxzy = 0.512 4 0.005 in agreement
with the prediction by the KZM with dv/(1 + zv) = 1/2 ford = 2,
v =1/2, and z = 2. (e) Spacing distribution P(S) for three different
quenches. The numerical data are consistent with the theoretical
fitting line P(S) = %Se*%sz. For each value of 7y, data are collected
from 10 000 independent trajectories.

V=V, z,x,y),A = A, 2,x, ), Ay = Ac(1, 2, X, y), Ay =
Ay(t,z,x,y), and A, = 0. In the simulation, we set the size
of the system as (x, y) = (50, 50) and the mass square of the
scalar field as m*> = —2. Numerical simulations and theoreti-
cal analysis indicate that in this system the correlation-length
critical exponent v = 1/2 while the dynamic critical exponent
7z = 2[34,53], so that the KZM correlation length is consistent
with & = &(79/70)*.

Before quenching, the system is thermalized by adding
the noise £(x;,¢) into the bulk and satisfying the condi-
tions (£(x;,¢)) =0 and (§(x;, 1)E(x;, 1)) = hd(t —t")8(x; —
x;), with a small amplitude h = 1073, Subsequently, a linear
quench of the temperature, from 7; = 1.47, to Ty = 0.8T,
prompts the system to evolve from a normal metal state to
a superconductor state. As a result of the U(l) symmetry
breaking, vortices form spontaneously as predicted by the
KZM.

We evaluate the spatial distribution of vortices until the sys-
tem enters the equilibrium state. Typical spatial distributions
of the vortices are shown in Figs. 3(a)-3(c) for three different

kinds of quench rates, 7o = 20, 500, and 1000. The number
of vortices decreases with the quench time. The scaling of
the average number of vortices as a function of the quench
time is shown in Fig. 3(d). For slow quenches, the scaling
law satisfies the KZM with the power Bkzv =~ 1/2 in two
dimensions. The corresponding vortex spacing distributions
are shown in Fig. 3(e). In obtaining Fig. 3, we first choose
a vortex as a reference and then determine the closest vor-
tex to it, regardless of its topological charge. Because we
used the lattice square to simulate the system, we regard the
vortices sitting at the same circumference of a square to have
the same distance to the centering vortex. The distributions
of P(S) estimated from 10* realizations are in good agree-
ment with the theoretical prediction in Eq. (9) in two spatial
dimensions. Numerically estimated distributions are slightly
narrower than the corresponding Wigner-Dyson distribution.
In two dimensions the interactions between topological de-
fects are logarithmic with the distance between topological
defects [61], excluding the validity of a short-range hard-disk
model as shown in the Supplemental Material [46]. As the
deviations from the ideal distribution are more pronounced for
slower quenches, we attribute them to coarsening.

Conclusions. Combining the scaling theory of continuous
phase transitions, the Kibble-Zurek mechanism, and elements
of stochastic geometry, we have described the spontaneous
formation of topological defects across a continuous phase
transition as a Poisson point process with KZM density. Using
this framework, we have predicted the universal form of the
defect spacing distribution as a function of the quench time
and spatial dimension. In one-dimensional systems, defect-
defect correlations are enhanced and can be taken into account
by considering the finite size of defects. The theory is ex-
pected to accurately reproduce the spacing distribution in
higher dimensions, as we have shown in a two-dimensional
setting, where remaining deviations are attributed to coars-
ening. Our results are amenable to experimental test with
established technology, exploiting any of the platforms pre-
viously used to probe KZM scaling, provided it is endowed
with spatial resolution, as is the case with trapped-ion sys-
tems [8,9], colloidal monolayers [62], multiferroics [11,12],
ultracold gases in various geometries [6,13—15], and quantum
simulators, to name some prominent examples.
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