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Thermal drag effect in quantum Hall circuits
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We study the thermal drag between two mesoscopic quantum Hall (QH) circuits. Each circuit consists of an
ohmic contact perfectly coupled to quantum Hall edge states. The drag is caused by strong capacitive coupling
between ohmic contacts. The nonequilibirum conditions and the electron-electron interaction are considered by
using the bosonization technique in the combination with the scattering theory or, equivalently, with the help of
the Langevin equations. The thermal drag current in the passive circuit, the noise power of the corresponding
heat current, and the Fano factor are calculated and analyzed for different coupling strengths.
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I. INTRODUCTION

The mutual electron drag effect is the phenomenon that
arises in a system of two isolated (in the absence of the trans-
fer of charge) quantum circuits coupled via the long-range
Coulomb interaction [1]. Typically, one is interested in the
so-called Coulomb drag effect, where the charge current in
the active part of the circuit causes the charge drag current
in the passive part of the circuit [2], and normally, this ef-
fect is perturbative and weak. The Coulomb drag effect in
various systems was thoroughly studied both experimentally
and theoretically [1]. It was further shown that the charge
drag current can also be mediated by the combined electron-
phonon, electron-photon, and electron-ion interactions [3–5].
All these effects must be differentiated from the thermal drag
effect, which can also be caused by the long-range Coulomb
interaction [6–9]. In this case, the flow of heat current in
the active circuit results in the heat current in the passive
circuit. Of particular interest is the thermal drag effect due
to the temperature difference between active and passive cir-
cuits. The effect of thermal drag was studied in the context
of quantum refrigerators and engines, heat diodes, and heat
pumps [10–15].

The recent progress in the fabrication of hybrid systems
that are based on chiral quantum Hall (QH) edge states made it
possible to do accurate mesoscopic experiments with strongly
interacting electron systems [16]. An interesting example of
such a system is a QH edge state perfectly coupled to an
ohmic contact, a mesoscale metallic granula with negligible
level spacing and finite charging energy comparable with the
temperature [17]. It is worth mentioning that such an ohmic
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contact immediately became a key element of experimental
and theoretical studies [16], remarkable examples being the
suppression of charge quantization caused by quantum and
thermal fluctuations [18,19], the heat Coulomb blockade ef-
fect [20–22], the interaction-induced recovery of the phase
coherence [23–25], the charge Kondo effect [26,27], the quan-
tization of the anyonic heat flow [28], and the observation of
the half-integer thermal Hall conductance [29,30].

In this letter, we propose a mesoscopic QH system with
embedded ohmic contacts, building up strong Coulomb inter-
actions, for studying the thermal drag effect (see Fig. 1). The
system consists of the active (upper) and passive (lower) quan-
tum circuits. Each circuit includes an ohmic contact perfectly
coupled to a chiral QH edge state: The edge state enters an
ohmic contact and leaves it without electron backscattering.
The thermal drag effect is caused by the capacitive coupling
between ohmic contacts of the active and passive circuits. The
temperature difference Tin,u − Tin,d > 0 is applied between
circuits which causes the temperature imbalance between con-
tacts and results in the thermal heat flow from the upper to the
lower part. We assume the full thermalization of the electron
systems inside ohmic contacts and find their temperatures for
the energy balance equations. In this letter, we focus on the
thermal drag current, its zero-frequency noise power, and the
associated Fano factor. The bosonization technique in com-
bination with the scattering theory for bosons allows us to
account for the strong interactions nonperturbatively. Recent
experimental studies of systems with one ohmic contact cou-
pled to edge channels [16–18,25–30] and with two coupled
ohmic contacts [31] demonstrate the experimental feasibility
of our proposal. The temperatures of the experiments have to
be compared with the charging energies of ohmic contacts. In
all these experiments, micron-sized ohmic contacts were used.
This is a sufficient condition for the strong interaction effects
to be observed.

2469-9950/2022/106(12)/L121405(5) L121405-1 ©2022 American Physical Society

https://orcid.org/0000-0002-0039-2134
https://orcid.org/0000-0002-2719-5528
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.L121405&domain=pdf&date_stamp=2022-09-30
https://doi.org/10.1103/PhysRevB.106.L121405


IDRISOV, LEVKIVSKYI, AND SUKHORUKOV PHYSICAL REVIEW B 106, L121405 (2022)

FIG. 1. Schematic of the possible experimental setup. The sys-
tems consists of two identical quantum circuits: upper (active) and
lower (passive) parts. Each part includes an ohmic contact (metallic
granula with capacitance C and negligible level spacing) which is
perfectly coupled to a chiral integer quantum Hall (QH) channel
(the channel enters an ohmic contact and leaves it without electron
backscattering). The incoming channels are kept at different tem-
peratures Tin,u − Tin,d > 0. The capacitive coupling between ohmic
contacts QuQd/Cud results in thermal drag effect: The upper meso-
scopic circuit induces extra heat current in the lower circuit in the
outgoing channel.

II. MODEL AND THEORETICAL APPROACH

We use the low-energy effective field theory [32,33] to de-
scribe QH edge states strongly coupled to the ohmic contacts.
The ohmic contact is modeled by extending an edge state in-
side the metallic granula and splitting it into two uncorrelated
channels [20,21]. The Hamiltonian of each quantum circuit

FIG. 2. The model of an ohmic contact with the capacitive inter-
action is illustrated, see Eq. (1). The charge current jin,α (t ) arriving
at the ohmic contact enters it at the interface at x = 0 and continues
as a neutral current jc

out,α (t ). The neutral current jc
α (t ) arriving at

the interface from inside the ohmic contact continues as a charge
current jout,α (t ). To account for the negligible level spacing in the
ohmic contact, we extend edge states inside it to minus infinity and
introduce the small regularization parameter ε in Eq. (1).

(α = u, d) contains two terms (see Fig. 2):

Hα = vF

4π

∑
σ=±

∫
dx(∂xφασ )2 + Q2

α

2C
,

(1)

Qα =
∫ 0

−∞
dx exp

(εx

vF

)
[ρα+(x) + ρα−(x)],

where vF is the Fermi velocity, C is the capacitance of each
ohmic contact, Qα is an operator of the total charge accumu-
lated at each ohmic contact, and ε is a small regularization
parameter. Here, the first term accounts for the dynamics of
incoming and outgoing edge channels, and the second term
describes the charging energy of an ohmic contact of a finite
size. The set of scalar fields φασ (x, t ), where α = u, d and
σ = ±, are introduced in Eq. (1) to describe the low-energy
physics. The operators of edge charge densities and currents
for incoming σ = − and outgoing σ = + states are given by
ρασ = (1/2π )∂xφασ and jασ = −(1/2π )∂tφασ . The bosonic
fields satisfy the standard canonical commutation relations:

[∂xφασ (x, t ), φα′σ ′ (x′, t )] = 2π iσδαα′δσσ ′δ(x − x′), (2)

where δαα′ is the Kronecker delta, and δ(x) is the Dirac delta
function. It is worth mentioning that the model presented
above of an ohmic contact was successfully used to explained
the experiments on the charge quantization, heat Coulomb
blockade, and heat quantization of anyonic flow [18,22,25].

The total Hamiltonian of the system includes three terms
(see Fig. 1):

H = Hu + Hd + Hud, (3)

where the Hamiltonians of the active and passive circuit Hα

are given in Eq. (1), while capacitive coupling between ohmic
contacts has the form:

Hud = QuQd

Cud
, (4)

where 1/Cud is the mutual capacitive coupling constant.
Using commutation relations in Eq. (2), the Hamiltonians

in Eqs. (1) and (3), and the boundary conditions for the fields
in terms of incoming and outgoing currents ∂tφα+(−∞, t ) =
−2π jc,α (t ), ∂tφα+(0, t ) = −2π jout,α (t ), ∂tφα−(0, t ) =
−2π jin,α (t ), and ∂tφα−(−∞, t ) = −2π jc

out,α (t ), one can
write and solve the equations of motion for the fields. Here,
jin,α (t ) is the incident charged current flowing toward the
ohmic contact α, the current jc,α (t ) describes the neutral
mode that originates from the ohmic contact α and acquires
its temperature Tc,α , the current jc

out,α (t ) is the outgoing
neutral mode propagating toward deep inside the ohmic
contact α, and finally, jout,α (t ) is the outgoing charged current
propagation from the ohmic contact α (see Fig. 2).

On one hand, the equations of motion for the currents and
the charges can be presented in a form of Langevin equa-
tions [19,21], namely,

∂t Qα (t ) = jin,α (t ) − jout,α (t ),

jout,α (t ) = Qα (t ) + λQ−α (t )

τc
+ jc,α (t ), (5)

jout,α (t ) + jc
out,α (t ) = jin,α (t ) + jc,α (t ),
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where λ = C/Cud � 1 is the dimensionless coupling constant,
τc = RqC is the charge relaxation time, Rq = 2π h̄/e2 is the
resistance quantum, and the notation −α = d, u indicates
swapping the indexes α = u, d. Here, the first equation ex-
presses the conservation of charge in the circuit α. The second
line is the Langevin equation, which has the simple mean-
ing: The outgoing current acquires one contribution [Qα (t ) +
λQ−α (t )]/τc from the time-dependent potential of an ohmic
contact α and the second contribution jc,α that can be viewed
as a Langevin source. The third equation expresses the con-
servation of the total particle current separately in the upper
and lower circuits.

On the other hand, the equations of motion with open
boundary conditions can also be used to formulate the scatter-
ing theory and relate four outgoing and four incoming currents
with the unitary scattering matrix:

Jout (ω) = Û (ω)Jin(ω), (6)

where Jout = ( jout,u, jout,d, jc
out,u, jc

out,d ), and Jin =
( jin,u, jin,d, jc,u, jc,d ). The scattering matrix in Eq. (6) has the
form:

Û (ω) =

⎡
⎢⎣

A B C −B
B A −B C
C −B A B

−B C B A

⎤
⎥⎦, (7)

where A(ω) = [iωτc + λ2 − 1]/[(ωτc + i)2 + λ2], B(ω) =
iλωτc/[(ωτc + i)2 + λ2], and C(ω) = ωτc[ωτc + i]/[(ωτc +
i)2 + λ2]. One can easily check the unitary Û†(ω) = Û (ω)−1,
which reflects the conservative character of the equations of
motion, before Langevin sources are traced out. It is also
worth mentioning that, at λ = 0 or 1, one recovers the results
for the scattering matrix obtained in Refs. [19,21,24].

Next, let us recall that currents originating from ohmic
contacts are in equilibrium. Thus, the two-point correlation
functions of the incoming currents as well as the Langevin
sources are given by the equilibrium spectral function [34]:

〈 jl,α (ω) jk,β (ω′)〉 = 2πδlkδαβδ(ω + ω′)R−1
q Sl,α (ω), (8)

where Sl,α (ω) = ω/[1 − exp(−ω/Tl,α )], l, k = in, c, and
α, β = u, d. These correlation functions are used for further
calculations. Note that the temperatures of ohmic contacts
Tc,u/d are yet to be found from the energy balance equations.

III. HEATING EFFECT AND THERMAL DRAG CURRENT

In a chiral QH channel, the energy current operator is
equal to the energy density operator multiplied by group ve-
locity Jl,α (t ) = (v2/4π )[∂xφl,α (x, t )]2. Using the equation of
motion for the bosonic field φl,α (x, t ), one can rewrite the
energy current as Jl,α (t ) = (Rq/2) j2

l,α (t ), where jl,α (t ) are
given in Eqs. (5) and (6). The heat current can be obtained
by subtracting the vacuum (zero temperature) contribution:

Jl,α = Rq

2

[〈
j2
l,α

〉 − 〈
j2
l,α

〉
vac

]
. (9)

For a ballistic equilibrium channel at the filling factor ν =
1 and temperature T , one uses the noise spectral func-
tion in Eq. (8) to arrive at the known result [21,35]: J =
πk2

BT 2/12h̄ ≡ JQ, where JQ is called the heat flux quantum.

Next, to find temperatures Tc,u and Tc,d in Eq. (8), we solve
self-consistently the energy balance equations, i.e., the con-
servation of incoming and outgoing heat currents at the ohmic
contacts (coupling to phonons, neglected here, can be con-
sidered as in Ref. [22,36]). These equations read Jc,u = Jc

out,u,
Jc,d = Jc

out,d, where the heat currents are defined in Eq. (9).
Using the relations between incoming and outgoing currents
in Eq. (6) and spectral noise functions from the Eq. (8), one
arrives at the system of coupled nonlinear equations for tem-
peratures of ohmic contacts:

πT 2
c,u

12
= πT 2

in,u

12
+ JB

in,d
in,u

(λ) + JA
c,u
in,u

(λ) + JB
c,d
in,u

(λ),

πT 2
c,d

12
= πT 2

in,d

12
+ JB

in,u
in,d

(λ) + JA
c,d
in,d

(λ) + JB
c,u
in,d

(λ). (10)

The functions on the right-hand side are given by

Ji
l,α
k,β

(λ) = π
[
T 2

l,α · Ii(λ, τcTl,α ) − T 2
k,β · Ii(λ, τcTk,β )

]
12

,

Ii(λ, a) = 6

(πa)2

∫ ∞

0

dzzgi(z, λ)

exp
(

z
a

) − 1
, i = A,B, (11)

where gA(z, λ) = |iz + λ2 − 1|2/|(z + i)2 + λ2|2, gB(z, λ) =
λ2z2/|(z + i)2 + λ2|2, and z = ωτc is the dimensionless inte-
gration variable. Note that the solution of Eq. (10) must be an
even function of λ since gi(z,−λ) = gi(z, λ).

We first concentrate on the limit of small temperatures
max{τcTl,α} � 1. In the case of ultimately strong coupling
λ = 1, the system of equations simplifies, and to the leading
order, one obtains equal temperatures:

T 2
c,u = T 2

c,d = T 2
in,u + T 2

in,d

2
. (12)

This result has a simple physical meaning: At λ = 1 and small
temperatures, two ohmic contacts merge into one, and the total
incoming heat flux π (T 2

in,u + T 2
in,d )/12 is equally distributed

between outgoing channels. In the case of weak coupling
λ � 1, the equations in Eq. (10) can be expanded to include
corrections to the leading order in λ:

T 4
c,u = T 4

in,u + 2λ2
(
T 4

in,d − T 4
in,u

)
,

T 4
c,d = T 4

in,d + 2λ2(T 4
in,u − T 4

in,d

)
. (13)

In the opposite limit of large temperatures, min{τcTl,α} �
1, one arrives at the result that holds for arbitrary values of λ

in the interval from 0 to 1 [37]:

T 2
c,u = T 2

in,u + 3λ2(Tin,d − Tin,u)

2πτc
,

T 2
c,d = T 2

in,d + 3λ2(Tin,u − Tin,d )

2πτc
. (14)

This is because, at large temperatures, the interactions are
effectively weak for the arbitrary strength of coupling.

To investigate the thermal drag effect, we assume that the
lower circuit is passive and cold Tin,d = 0 and concentrate on
the most interesting limit of low temperatures τcTin,u � 1. In
the case of strong coupling λ → 1, the temperatures of ohmic
contacts are equal [see Eq. (12)]; therefore, the total incoming
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heat flux Jin,u = JQ in the upper incoming channel with the
temperature Tin,u splits into two equal outgoing fluxes. Thus,
the thermal drag current in the lower circuit takes its maxi-
mum value of

Jout,d = Jin,u

2
. (15)

For small λ � 1, the the thermal drag current acquires the
following form (see the Supplemental Material [37]):

Jout,d = 8π2λ2

5
(τcTin,u)2Jin,u, (16)

i.e., it is suppressed by two small parameters λ and τcTin,u. In
what follows, we use Eqs. (15) and (16) to calculate the Fano
factor of the thermal drag current noise.

IV. NOISE OF THERMAL DRAG CURRENT

The spectral density of heat current fluctuations at zero
frequency and the Fano factor of the heat current are defined
as

Sl,α =
∫

dt〈δJl,α (t )δJl,α (0)〉, Fl,α ≡ Sl,α

〈Jl,α〉 , (17)

where δJl,α (t ) = Jl,α (t ) − 〈Jl,α (t )〉. We first consider an equi-
librium ballistic channel at the temperature T as a reference.
By substituting the operator of heat current from Eq. (9)
into Eq. (17) and applying Wick’s theorem, we arrive at the
following result (see the Supplemental Material [37]) [35]:

S = 2kBT JQ ≡ SQ and F = 2kBT ≡ FQ. (18)

Thus, the upper incoming channel carries the heat current
noise Sin,u = SQ with the temperature Tin,u, and the Fano
factor is equal to FQ.

Next, using Eqs. (6) and (7), after some algebra, we arrive
at the following expression:

Sout,d =
∑

lk
αβ

∫
dω

2π
Sl,α (−ω)Ml,α;k,β (−ω,ω)Sk,β (ω), (19)

where Sl,α (ω) are given in Eq. (8), and we introduced
Ml,α;k,β (−ω,ω) = ml,α (−ω)mk,β (ω)/2 with min,u(ω) =
|B(ω)|2, min,d(ω) = |A(ω)|2, mc,d(ω) = |C(ω)|2, and
mc,u(ω) = min,u(ω). This general result can be applied to
a number of physical situations. Below, we concentrate on the
noise of the thermal drag current in the most interesting limit
of Tin,d = 0 and τcTin,u � 1 and in the regimes of strong and
weak coupling.

In the limit λ = 1, one can set min,u = min,d = mc,u =
mc,d = 1

4 , and the straightforward calculation gives (see the
Supplemental Material [37])

Sout,d = 3I
2π2

Sin,u, (20)

where I ≈ 2.5782. By using the expression for heat current
in the lower outgoing channel, Eq. (15), we obtain the Fano

factor of the thermal drag current:

Fout,d

Fin,u
≈ 1.5673. (21)

In the limit of weak coupling λ � 1, one obtains (see the
Supplemental Material [37])

Sout,d = 3λ2K
2

(τcTin,u)2Sin,u, (22)

where K ≈ 10. By using Eq. (16) for the heat current, one
obtains the Fano factor:

Fout,d

Fin,u
≈ 0.9498. (23)

The above result deserves an additional discussion. First,
we note that the Fano factor of the noise of the equilibrium
heat current can be estimated as a size of the typical fluctua-
tion of heat, which is of the order of the average heat current
times the correlation time. In equilibrium, the correlation time
of the heat current noise is of the order of 1/T (the only avail-
able timescale). That is why the Fano factor of the equilibrium
heat current noise scales linearly with the temperature [see
Eq. (18)]. Therefore, it appears somewhat surprising, from
the first glance, that in the weak coupling regime λ � 1, the
Fano factor of the thermal drag current is close to the one of
the incoming equilibrium channel with the temperature Tin,u,
despite the fact that the effective temperature of the thermal
drag current scales as λτcT 2

in,u, i.e., it is smaller by the di-
mensionless factor λτcTin,u � 1. The explanation of this effect
lies in the fact that, in the weak coupling regime, the thermal
drag effect can be viewed as essentially a nonequilibrium
rare Poissonian process of the emission and reabsorption of
photons between the upper and lower parts of the circuit. In
this case, the Fano factor acquires the values of the order of the
average energy of transmitted photons, which is of the order
of the temperature of the incoming equilibrium channel.

To summarize, we have proposed and theoretically ana-
lyzed a strongly interacting mesoscopic electron system for
studying the thermal drag effect. The system that is based
on QH edge states perfectly coupled to ohmic contacts is
accessible to modern experiments. It consists of an active cir-
cuit, where the heat is generated, and a passive circuit, where
the heat flux is induced by nonlocal Coulomb interactions.
The model of the system is exactly integrable with the help
of the bosonization technique and the scattering theory for
bosons. We have calculated the thermal drag current, the cor-
responding zero frequency noise power, and the Fano factor
of the thermal noise. It has been shown that, depending on the
interaction strength, the Fano factor can be larger or smaller
than the Fano factor of the equilibrium ballistic channel.
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