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Two recent experiments from Cornell University and Columbia University have reported insulator-to-metal
transitions in two-dimensional (2D) moiré transition metal dichalcogenides (mTMDs) induced by doping
around half filling, where the system is a Mott insulator. In this Letter, we consider the temperature-dependent
resistivity of this metallic phase in the doped situation away from half filling, arguing that it arises from
the strongly temperature-dependent 2D Friedel oscillations (i.e., finite momentum screening) associated with
random quenched charged impurities, leading to the observed strongly increasing linear-in-T resistivity in the
metallic phase. Our theory appears to account for the temperature-dependent metallic resistivity for doping
around half filling of the effective moiré TMD band, showing that temperature-dependent screened Coulomb
disorder is an essential ingredient of doped 2D mTMD physics.
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Introduction. The Mott insulator (MI) is a strongly corre-
lated electronic phase, where a half-filled (generally, narrow)
band, instead of being a metal as simple electron counting
implies, is rendered an insulator because of strong interactions
suppressing the itinerant electronic hopping so as to mini-
mize interaction effects. This happens when the dimensionless
parameter U/t � 1, where U (t ) is the effective interaction
(hopping) strength, and narrowband systems with small t
are the prime candidates for the MI phase. Understanding
all aspects of MI physics is one of the major thrusts in
condensed matter physics, and has been that way for more
than 50 years, but the problem is a difficult nonperturbative
strong-coupling many-electron problem not amenable to easy
theoretical (or even numerical) solutions. Recent experiments
in moiré homo- and heterobilayer transition metal dichalco-
genide (mTMD) structures have reported the observation of
strongly correlated insulating phases at various rational fill-
ings including not only half filling (i.e., one spinful electron
per lattice site), but also 1/4, 2/3, etc., rational fillings [1–5].
These observations have been theoretically interpreted as the
manifestation of MI-like correlated insulator phases which
also naturally manifest charge density and spin density waves
[6–11]. The current theoretical work is focused not on the
half-filled MI phase, but on the situation where the mTMD
system is doped slightly away from half filling where it should
be a metal [10]. In general, a doped MI should always be a
metal, superficially similar to a doped semiconductor although
the origin of the undoped MI phase is qualitatively different
from the single-particle band picture applicable to undoped
semiconductors.

Recent experiments from Cornell University [1] and
Columbia University [2] report the observations of two-
dimensional (2D) metal-insulator transitions (MITs), where
doping the half-filled correlated MI state in both homobilayer
[2] and heterobilayer [1] mTMD systems eventually converts

the system at a critical doping to a metal with a finite T = 0
conductivity (of course, the MI by definition has zero T = 0
conductivity). This doping-induced MIT around half filling is
the main subject of the current theoretical Letter. In particular,
the experiments report a strong linear-in-T resistivity (with re-
sistivity increasing linearly with increasing T ) in the metallic
phase above the critical doping in contrast to their observed T 2

resistivity [1,2] in the metallic phase at half filling (obtained
by tuning an applied external electric field presumably by
tuning the effective U/t so as to induce the Mott transition;
we do not discuss the strong correlation-driven MIT at half
filling since it is outside the scope of our theory). Presum-
ably the T 2 metallic temperature dependence at half filling
beyond the MIT arises from the usual Fermi-liquid behavior
of umklapp electron-electron scattering, but the linear-in-T
temperature dependence of the doping-induced metallic state
above the critical doping is anomalous since the expectation is
that this T dependence should also be the usual Fermi-liquid
T 2 behavior as the finite-doping metal slightly away from
half filling should be a normal metal. Based on this observed
linear-in-T resistivity behavior, the experimental finite-doping
metallic phase around half filling has been claimed to be a
putative non-Fermi liquid arising from some type of a con-
tinuous quantum critical MIT, which generally should not
happen in 2D in the presence of any disorder by virtue of
the scaling theory of localization. We mention that there is
no known (or proposed) quantum critical point in the doped
system around half filling leading to a linear-in-T resistivity.
In the current Letter, we provide a physically motivated ex-
planation for the linearly temperature-dependent resistivity in
the doped metallic case, arising from screened Coulomb dis-
order due to the inevitable presence of unintentional quenched
random charged impurities in the TMD environment. This
same Coulomb disorder is also responsible for producing the
apparent 2D MIT crossover behavior itself (i.e., producing the
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localized insulating phase around half filling) in the doped
samples as we have argued recently [12].

Theory. The resistivity can be calculated using the usual
Drude formula

ρ(T ) = m

ne2τ (T )
, (1)

where m = 0.45 (in units of free-electron mass) is the appro-
priate effective mass [13] and n is the mobile carrier density.
Since the mTMD systems are slightly doped away from half
filling, only the fraction of electrons occupying the upper
Hubbard band can participate in the metallic transport, and
thus throughout this Letter we set n = nT − nM as the mo-
bile carrier density in the metallic phase, where nT is the
total carrier density, and nM = 5 × 1012 cm−2 is the moiré
density corresponding to half filling. τ (T ) is the temperature-
dependent scattering time within the Boltzmann transport
theory given by

τ (T ) =
∫

dεkτ (εk )εk
(− ∂ f (εk )

∂εk

)
∫

dεkεk
(− ∂ f (εk )

∂εk

) , (2)

where τ (εk ) denotes the zero-temperature transport time lim-
ited by screened charged disorder, which we calculate using
the leading-order Boltzmann transport theory,

1

τ (εk )
= 2πni

h̄

∑
k′

|ui(k − k′)|2(1 − cos θ )δ(εk − εk′ ), (3)

where ni is the background unintentional random charged
impurity density, ui(q) = 2πe2/κqε(q, T ) is the screened
Coulomb scattering potential between a charged impurity and
an electron with ε(q, T ) = 1 + (2πe2/κq)�(q, T ) denoting
the random phase approximation (RPA) finite-temperature
and finite-momentum dielectric function, and κ = 5 the back-
ground lattice dielectric constant for mTMD. RPA is a
reasonable screening approximation since the effective inter-
action parameter (rs ∼ 1) is rather small here and the theory is
applied entirely in the metallic regime. The finite-temperature
polarizability �(q, T ) can be expressed as an integral of the
zero-temperature polarizability,

�(q, T ) =
∫ ∞

0
dε

�(q, T = 0)|εF=ε

4kBT cosh2 ε−μ(T )
2kBT

, (4)

where

�(q, T = 0) = m

π h̄2

⎡
⎣1 − �(q − 2kF)

√
q2 − 4k2

F

q

⎤
⎦ (5)

is the zero-temperature 2D polarizability [14]. Here, μ(T )
and kF are the chemical potential and the Fermi wave vector,
respectively. With Eqs. (1)–(5), the low- and high-temperature
resistivity can be asymptotically expanded as [15]

ρ(T � TF) ≈ ρ0

[
2x

1 + x

( T

TF

)
+ 2.646x

(1 + x)2

( T

TF

)3/2]
,

ρ(T � TF) ≈ ρ1

(TF

T

)[
1 − 3

√
x

4

(TF

T

)3/2]
, (6)

where qTF = 2me2/κ h̄2 is the Thomas-Fermi wave vector,
ρ0 = ρ(T = 0) is the zero-temperature residual resistivity in-

duced by impurity scattering, ρ1 = (h/e2)(ni/n)(πx2/2), and
x = qTF/2kF. We note and emphasize that the temperature-
dependent resistivity explicitly analytically follows the low-T
behavior ρ(T )/ρ0 = 1 + A(T/TF), where A is a doping-
dependent constant, precisely as experiments observe [1,2].
This linearity, which violates the well-known Sommerfeld
expansion, arises from the 2kF anomaly of the 2D screening
function, where the temperature effect in suppressing 2kF

screening is strong going as O(T 1/2) rather than the expo-
nentially weak T dependence manifesting at long wavelength
screening [15]. Thus, the linear-in-T behavior ultimately
arises from the anomalous T dependence of 2D Friedel oscil-
lations, leading to the nonanalytic T dependence of screening
at 2kF. This physics could qualitatively be construed as the
high-temperature analog of the 2D Altshuler-Aronov effect.

We emphasize that this linearly T -dependent metallic
resistivity in our theory (and presumably as observed ex-
perimentally in Refs. [1,2]) does not arise from any T =
0 quantum criticality and does not imply any non-Fermi-
liquid behavior. It is simply a nonanalytic anomalous finite-T
property of the 2D Fermi surface, where the temperature
dependence deviates qualitatively from that given by the Som-
merfeld expansion arising from the 2kF anomaly [16–19]. We
also note that any phonon scattering-induced T dependence
is irrelevant in the temperature range of interest, because the
electron-phonon coupling is very weak in TMD materials [13]
and also because the phonon-induced temperature dependence
is negligible, going as T 4 in this low-temperature range well
below the Bloch-Grüneisen temperature. Using the known
deformation potential coupling [20] constant (∼1 eV) in TMD
materials, we estimate the linear-in-T contribution to the re-
sistivity coming from intrinsic electron-phonon scattering to
be ∼0.1 /K, which is negligible (by three to four orders
of magnitude) compared with our results in Fig. 1 (and the
experimental results of Refs. [1,2]).

We present in the next section our numerical results
for the full transport theory using mTMD parameters from
Refs. [1,2]. We note that, while ρ0 depends on the impurity
parameters, the temperature dependence itself is independent
of disorder details in the metallic phase.

Results. In Fig. 1 we show the calculated T dependence of
the doped metallic mTMD resistivity based on our screened
disorder scattering as described above. The results shown in
Fig. 1 are in good qualitative and semiquantitative agreement
with the experimental results of Refs. [1,2,21]. In particular,
the three most significant salient features of the experimen-
tal results are reproduced well in the theory: (1) a linear
T dependence in the resistivity in the leading order at the
lowest temperatures; (2) the T dependence becoming stronger
with decreasing doping density approaching the MIT critical
density from the metallic side; and (3) the T dependence could
be by as much as a factor of 2–6 for a modest temperature
increase of ∼20 K as observed experimentally. We emphasize
that our Boltzmann theory-based transport theory becomes
progressively worse quantitatively as the MIT is approached,
remaining qualitatively (but not quantitatively valid) near the
effective MIT itself. We do not provide a direct comparison
with the actual experimental data because it is not mean-
ingful to do so because of (1) the approximate zeroth-order
nature of our theory, and (2) the experimental results show
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FIG. 1. Numerically calculated resistivity (solid lines) as a func-
tion of T along with the analytical asymptotic results (dashed lines)
for doped metallic mTMD samples from the (a), (b) Cornell and
(c), (d) Columbia groups. Each resistivity curve in a different color
corresponds to a different filling factor, which is indicated by a
colored number in the figure. The insets present a zoom-in of the low-
temperature regime, where the full numerical and analytical results
are in good agreement exhibiting a linear T dependence at T � TF.
For calculations, we set the impurity densities (a) ni = 8.71, (b) 10.1,
(c) 6.2, and (d) 7.8 × 1010 cm−2, which are estimated by fitting the
lowest-temperature measured resistivity [1,2] to the leading-order
Boltzmann theory as a function of carrier density [12]. The estimated
impurity density is reasonable for TMD materials [13]. The Fermi
temperature TF in each figure is given by TF = | f − 1|308.7 K for
(a) and (b), and TF = | f + 1|308.7 K for (c) and (d), where f is the
filling factor.

significant sample-to-sample variations, implying that only a
semiquantitative and qualitative comparison between theory
and experiment is sensible at this point. The most significant
success of the theory is in providing a natural explanation for
the linear-in-T behavior and its doping dependence and the
fact that the required impurity density, the only free parameter
in the theory providing the correct quantitative resistivity scale
agreeing with the experiment, is reasonable.

We must emphasize that the linear-in-T resistivity ex-
tending to low temperatures in our theory is not connected
with any non-Fermi-liquid behavior whatsoever. The metallic
system remains a Fermi liquid here everywhere since the
linear-in-T transport scattering rate is simply a momentum
relaxation rate relevant for current relaxation, and has nothing
to do with any dynamical imaginary self-energy varying as
linear in T . Any non-Fermi-liquid behavior requires the in-
elastic scattering rate to go as (at least) linear in T and the T
dependence of the momentum relaxation by itself is irrelevant.

In Fig. 2 we plot the calculated finite-T scattering
rate, defined by h̄/τ (T ) where 1/τ (T ) = m[ρ(T ) − ρ(T =
0)]/(ne2), as a function of T for different carrier densities n,
in order to emphasize the “Planckian” nature [22,23] of trans-
port in doped mTMD layers, although the Planckian behavior
here is not associated with any non-Fermi-liquid property or
hidden quantum criticality, arising specifically from the 2D
Fermi-liquid 2kF anomaly. The fact that h̄/τ > T in Fig. 2(b)
indicates the strange metallic super-Planckian behavior for the

FIG. 2. The calculated scattering rate � = h̄/τ scaled by tem-
perature as a function of T/TF for the results of Fig. 1, indicating
the super-Planckian (�/kBT > 1) in (b) arising from temperature-
dependent screened disorder scattering. Note that this figure shows
only the T -dependent scattering subtracting out the T = 0 disorder
scattering rate.

Cornell doped hole data, whereas the other three sets of data
are sub-Planckian.

For the sake of completeness, we have also calculated the
carrier density-dependent mobility μ, indicating the sample
quality for both Cornell and Columbia doped samples using
the one-parameter impurity density fit, which is fixed by com-
paring the measured resistivity with the theory just at one
doping density at the lowest temperature. The mobility μ is
defined by

μ = 1

neρ
, (7)

where ρ is the resistivity at the lowest temperature (i.e., ρ0 in
the theory). These calculated results as well as the power-law
fits to μ ∼ nα , where α is the density exponent of μ(n), are
shown in Fig. 3 for the Cornell and Columbia experiments,
respectively, both on the electron and hole doping sides. For
these calculations, we set the impurity densities ni = 8.71,
10.1, 6.2, and 7.8 × 1010 cm−2 for Figs. 3(a)–3(d), respec-
tively, which are estimated by fitting the density-dependent
experimental resistivity to the leading-order Boltzmann theory
[12]. We note that the best-fit impurity density in all cases is
ni ∼ 5 × 1010 cm−2, which is consistent with the known qual-
ity of these TMD materials [13]. There is a small difference
between the impurity content on the electron/hole doping
sides consistent with the experimentally observed asymmetry
in the experiments on the two doping sides. Our calculated
mobility and its density dependence both agree well with the
experiments. The fact that our theory accounts for the mea-
sured sample mobility and its doping dependence naturally
with very reasonable choices for the sample disorder provide
strong support for our disorder model of the mTMD transport
physics in doped samples.

We emphasize that the increasing mobility with increasing
doping is a direct manifestation of the effect of screening of
the Coulomb disorder by the doped carriers, and cannot be
explained by the Mott-Hubbard type strong correlation model
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FIG. 3. Calculated mobility for each mTMD sample obtained
by fitting the experimental resistivity measured at the lowest tem-
perature to the leading-order Boltzmann theory [12]. The insets
show the density-dependent power-law exponent as a function of
n calculated numerically using α = ∂ ln μ/∂ ln n. We note that the
mobilities (∼103 cm2/V s) are rather low, indicating the dominant
role of disorder, and the exponent α being small (�1) indicates the
strong role of screening.

at all. In particular, the limiting theoretical values of α can
be deduced from our theory analytically with α(x � 1) = 1.5
as appropriate for unscreened disorder and α(x � 1) = 0 as
appropriate for totally screened short-range disorder (with

x = qTF/2kF) [24]. The fact that α < 1 throughout in Fig. 3
indicates that mTMD systems are strong screening systems
(by virtue of its large effective mass), and the low mobility
value (∼103 cm2/V s) is simply a manifestation of the highly
disordered nature of the current mTMD samples. Improve-
ment in sample quality should lead to much wider metallic
regimes on both electron/hole sides of future mTMD samples
[25].

Conclusion. We provide a plausible theory for the strong
temperature dependence of the reported 2D metallic resistivity
of mTMD bilayers doped away from half filling. Our theory
explains the observed strong temperature dependence of the
doped metal as arising from the screened Coulomb disorder,
and not from any unknown quantum criticality or mysterious
non-Fermi-liquid properties. Our microscopic disorder-based
transport theory is in agreement with the experimental finding
of a linear-in-T resistivity down to the lowest experimental
temperatures as well as the strong T dependence, along with
a Planckian behavior with the scattering rate exceeding tem-
perature itself. One obvious implication of our disorder-based
theory is that cleaner (dirtier) systems with less (more) dis-
order should manifest a larger (smaller) metallic regime with
a smaller (larger) critical doping density for the observed 2D
MIT. Our work suggests that doping-induced effective MIT in
mTMD bilayers may be arising from Coulomb disorder and
not from strong correlation.
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