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Edge states of topological acoustic phonons in graphene zigzag nanoribbons
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The tight-binding method is an effective way to study topological insulators. However, an intrinsic element,
i.e., the acoustic sum rule (ASR) in phonon systems, has often been overlooked when constructing the Wannier
tight-binding phonon Hamiltonian, which results in edge states of acoustic modes rarely observed in previous
works. In the present work, we show that the topological acoustic edge states in graphene need to be assessed by
ASR. Interestingly, when the inversion-time-reversal symmetry is broken, the distributions of some edge states
will mutate from two edges of the nanoribbon to one edge. Moreover, some other topological phonon modes,
which are different from previous reports, have also been observed. Our results would shed light on the method
for searching topological phonon states, and provide effective strategies for designing phononic devices.
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Introduction. The last dozen years have witnessed the rapid
development of topological phononics, which has been at-
tracting tremendous interest in how to manipulate phonons
more effectively [1–6]. In earlier studies, in addition to the-
oretical exploration [7–18], topological phonon states have
also been realized in various macroscopic artificial lattices
[19–21]. However, due to the importance of atomic lattice
vibrations in material physics, more and more attention has
been paid to natural crystalline materials. In recent years, vari-
ous topological phonon states, such as Dirac phonons [22–24],
Weyl point phonons [25–30], nodal-line phonons [29,31,32],
nodal-ring phonons [33,34], and nodal-net phonons [35], have
also been discovered in natural crystalline materials. The ex-
ploration of topological phononics in real materials may be
of great importance in some potential applications, such as
phononic devices [16,18,36,37], thermal metamaterial [38],
topological transport [39,40], and thermoelectrics [41,42].

In the development of topological phononics, it is very im-
portant to introduce topological related concepts and methods
into phononic systems legitimately. Like electrons, phonons,
as a kind of elementary excitation, are also described by
the Bloch wave function. Hence, it is possible to extend the
topological concepts of electronic systems to phononic sys-
tems. However, given the fact that electrons and phonons are
different in equations of motion, topological phononics should
not be viewed as a simple extension of topological electronics
[4,6]. Hence, new equations were proposed successively to
describe the dynamical behavior of phonons [3,7,16] so that
the topological concepts of phonons, such as Berry curva-
ture, Chern number, and Z2 invariant, can be defined more
rigorously. For example, based on eigenvalue equation of
non-Hermitian phonon Hamiltonian, the phonon Hall effect is
well explained by introducing concepts such as time-reversal
(T ) symmetry broken, Berry curvature, and Chern number
into the phonon systems [7,43]. On the other hand, up to
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now, when constructing the phonon Hamiltonian of the open-
boundary systems for the natural crystalline materials, quite
a lot of works are still following the methods of electronic
systems. However, owing to the symmetry requirements of
phonon Hamiltonians such as ASR, the reasonability of this
processing method should be reassessed.

In the present work, we have discussed the difference
in constructing the Wannier tight-binding Hamiltonian be-
tween phononic and electronic systems. For simplicity, a 1D
monatomic lattice model is presented to illustrate the core
idea of this work. Our result shows that the on-site terms of
the phonon Hamiltonian of open-boundary systems need the
correction of ASR. Furthermore, we reassess the topological
phonon states in graphene based on the proposed method. The
topologically nontrivial edge states of acoustic phonons are
found in free-standing graphene nanoribbons. In addition, the
optical modes satisfying ASR are also quite different from
those reported previously. When the inversion-time-reversal
(PT ) symmetry is broken, along with the splitting of the
phonon bands, the distributions of some states will mutate
from two edges of the nanoribbon to one edge. Moreover,
the topologically nontrivial edge states with nonzero Chern
numbers protected by T symmetry have also been found.

Hamiltonian of 1D monatomic lattice. To start, we consider
a 1D monatomic lattice model as shown in Fig. 1, where the
blue spheres represent concentrated masses m connected by
linear springs with stiffness k. Its dynamical behavior can be
investigated by considering the equation of motion for the nth
mass

mün = −k(2un − un−1 − un+1), (1)

where un represents the displacement of the nth mass away
from its equilibrium position. The solution of un is sought in
the form of Bloch harmonic plane wave

un(t ) = ûne−iωt = ũei(nqa−ωt ), (2)

where ω and q are the temporal frequency and wavenumber
of harmonic motion, respectively. ûn and ũn are complex
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FIG. 1. Schematic of the 1D monatomic lattice.

quantities that define the amplitude of wave motion. Accord-
ing to the recurrence relation between masses described by
Eq. (1), the Hamiltonian matrix of this period system can be
written as

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

2k −k 0 · · · 0 −k
−k 2k −k · · · 0 0
0 −k 2k · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2k −k
−k 0 0 · · · −k 2k

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3)

The corresponding eigenvalue equation is HU = λU, where
U = (u1, · · · , uN )T is the eigenvector, and λ = mω2 is the
eigenvalue. Note that, for the infinite periodic system without
external field, the Hamiltonian always satisfies the so-called
ASR, i.e.,

∑
i( j) Hi j = 0. In other words, for each row (col-

umn) of H, the value of the on-site term is always equal to the
opposite value of the sum of all hopping terms:

Hii = −
∑

i( j),i �= j

Hi j . (4)

Based on this, when we consider the open-boundary case
corresponding to this system, the interaction between the head
and tail masses should be removed from the above Hamil-
tonian. Therefore, the Hamiltonian matrix at open boundary
condition can be written as

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

k −k 0 · · · 0 0
−k 2k −k · · · 0 0
0 −k 2k · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2k −k
0 0 0 · · · −k k

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5)

Because of the limitations of Eq. (4), when we remove the
hopping terms between the head and tail masses, we also
need to rewrite the 2k of the on-site terms to k. But for the
electronic systems, this step is not required for the on-site
terms. Therefore, the Hamiltonian matrix elements of the
electronic system is still periodic in the direction away from
the boundary, while the phonon system is not. In this toy
model, for simplicity, we only consider the nearest neighbor
interaction so that just two terms in H need to be modified, as
shown in Eq. (5). Nonetheless, the ASR has a distinct effect on
the overall phonon energy level, especially for the addition of
acoustic modes (see Supplemental Material [44]). Moreover,
the impact of the ASR on the dispersion of phonons will get
larger as the number of interacting neighbors increases. The
force constant obtained by the first principle calculation based
on density functional theory (DFT) is long-range correlation
and symmetry broken [45]. Therefore, it is necessary to take
the modification of the on-site terms into account when em-
ploying the phononic tight-binding (TB) model from the DFT
data.

Next, we further discuss the impact of ASR on phonon
topological effects through a first-principles calculation ex-
ample. Previous reports on topological phonons are basically
about optical modes in phonon band structure. Recently, the
acoustic triple point (ATP) protected by the Nambu-Goldstone
theorem was reported to be able to carry a topological charge
q if the Euler number of the transverse modes is nonzero
[46]. Besides, the corresponding surface-localized states will
be found if the phonon group velocity satisfies the condi-
tion vT /vL < 1. Based on this, it has also been reported
recently that the ATP of graphene on a TaC(111) substrate
is topological, and it will possess a nontrivial nodal charge
(the frame-rotation charge) [47]. Topological phonons of free-
standing graphene and its corresponding edge states have
also been reported previously [14,23]. But interestingly, the
edge states of topological acoustic phonons in graphene have
never been found before. Therefore, the ASR is expected to
has some key impact on the phonon topological effects of
graphene.

Computational details. Our calculations are based on the
density functional theory (DFT) [48,49] and density func-
tional perturbation theory (DFPT) [50] using the Vienna
ab initio simulation package (VASP) [51,52]. The interac-
tions of electron-electron and electron-ion are described by
the projector augmented-wave (PAW) method [53,54] and
Perdew-Burke-Ernzerhof (PBE) functional [55], respectively.
The plane-wave cutoff energy is set to 520 eV and the
Monkhorst-Pack [56] k-point mesh is used with a size of
13 × 13 × 1 for the Brillouin zone (BZ) sampling. A vacuum
layer of 20 Å is used for the unitcell and the 7 × 7 × 1 su-
percell. In order to get stable crystal structure and reliable
force constants, we set the convergence criteria to 10−6 eV
and 0.001 eV/Å for electronic self-consistency iteration and
ionic relaxation, respectively. The PHONONPY code [57] is
used to obtain the force constants, which are further used as
parameters for building phonon TB Hamiltonians to analyze
the topological nature.

The Schrödinger-like equation of phonons, i.e., Hψ =
ωψ , is adopted to investigate the phonon dispersions [16]. The
Hamiltonian matrix has the following form:

H =
(

0 iD1/2

−iD1/2 −2iη

)
, (6)

where D is the dynamical matrix and η is the T -broken term.
The P symmetry is broken by replacing one of the 12C atoms
in the graphene primitive cell with isotope 14C [58], while
the T symmetry is broken by introducing the Raman spin-
lattice interaction [7,16,59]. Reference [16] shows the matrix
element of the T -broken term

η̂μν = δμν

⎛
⎝ 0 −�z �y

�z 0 −�x

−�y �x 0

⎞
⎠, (7)

where δμν is the Kronecker delta function. We set the param-
eters �z = 0.1 and �x = �y = 0 so that the direction of the
external field is set to be perpendicular to the graphene plane.
To display the localization features of topological surface
states, the nonequilibrium Green’s function (NEGF) method,
which has been widely used for many-body quantum transport
[60–65], is adopted to calculate the surface local density of
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FIG. 2. Phonon dispersions of graphene under various circum-
stances. (a) Honeycomb lattice of graphene, where the primitive
cell shows inside the red line. (b) The high-symmetry path in BZ
for phonon band structure calculation. (c) Phonon dispersions of
graphene with PT symmetry, where the DPs are marked with red
dots. The inset is the distribution of Berry curvature in the BZ
corresponding to the 1–4 bands. Phonon dispersions with the Chern
numbers labeled on the bulk bands of graphene with T -broken,
P-broken and PT -broken are shown in (d), (e), and (f), respectively.
Here, the P symmetry is broken by replacing one of the C atoms in
graphene primitive cell with isotope 14C, while the T symmetry is
broken by introducing the Raman spin-lattice interaction.

states (LDOS). However, the Hamiltonian described by the
Schrödinger-like equation of phonons contains the D1/2 term,
which makes it impossible to handle the left and right semi-
infinite leads independently. Here, we calculate the surface
LDOS by using the generalized NEGF method [16,66].

Phonon dispersion of graphene. We first calculate the
phonon band structure of free-standing graphene. The prim-
itive cell of graphene and the high-symmetry path in BZ for
phonon band structure calculations are shown in Figs. 2(a)
and 2(b), respectively. Phonon dispersions in each case are
presented in Figs. 2(c)–2(f). It is seen that, when the system
has PT symmetry, there are several degenerate points (DPs)
in the phonon spectrum marked by red points in Fig. 2(c),
including the ATP, which is consistent with previous reports
[23,45]. While some of the DPs will open a band gap when
any of the PT symmetry is broken, as shown in Figs. 2(d)–
2(f) specifically. At K and K′, the DPs formed by longitudinal
acoustic (LA) and longitudinal optical (LO) bands at about 36
THz will always open a full band gap when P/T symmetry
is broken. The results with symmetry broken above are con-
sistent with previous reports about the 2D honeycomb lattice
model [16].

Therefore, we further calculate the Chern number of the
1-4 and 5-6 bands under various circumstances, and the results
are labeled on the bands. Importantly, the fact that the band
gap between LA and LO branches is topologically nontrivial
is confirmed by the nonzero Chern numbers when the T
symmetry is broken. This is also consistent with the results
of previously reported models [8,16]. Hence, gapless one-way
edge states are expected to emerge in this topologically non-
trivial band gap.

It should be noted that the nodal charge of the ATP is –1
[47], although the Chern number is zero when the system has

T symmetry. Moreover, the group velocities of the acoustic
phonons in Fig. 2(c) satisfy the condition vT /vL < 1. These
results mean that the ATP of graphene is topologically non-
trivial with PT symmetry, and meanwhile the topological
ATP will also correspond to topologically nontrivial edge
states [46].

Edge states of the zigzag graphene nanoribbons. To verify
the existence of such edge states, we construct a phonon TB
model for the zigzag graphene nanoribbon (ZGNR) with a
thickness of 20 layers [Fig. 3(a)]. The ZGNR has a vac-
uum layer of 20 Å in the aperiodic directions. The phonon
dispersions of the ZGNR with no PT -broken are shown in
Figs. 3(b) and 3(c). When no ASR is performed, there are no
acoustic modes in the phonon spectrum of ZGNR, as shown
in Fig. 3(b), which leads to unphysical results. However, the
whole phonon spectrum will be reasonable when the ASR is
performed for the Hamiltonian of ZGNR. Concretely, after
the correction of ASR, the acoustic modes appear, as shown
by the thick green lines in Fig. 3(c). Moreover, two of these
acoustic modes, which are labeled as M2 in Fig. 3(c), appear in
the local band gap of 14–18 THz around the X point. Besides,
the group velocities of the modes marked by yellow lines,
which are labeled as M1 in Fig. 3(c), have changed dramat-
ically. Meanwhile, the modes at about 30 THz around X point
[as shown in Fig. 3(b) with red dashed frame] disappear. These
significant changes argue the importance of performing the
correction of ASR in constructing the phonon TB Hamiltonian
based on first-principles calculations.

Next, based on the TB Hamiltonian with ASR correction,
we introduce the P-broken term and T -broken term to the
ZGNR phonon system in succession, and the phonon disper-
sions are shown in Fig. 3(d) and 3(e), respectively. On the one
hand, the twofold degeneracy of M1 and M2 are both elimi-
nated when the P symmetry is broken [Fig. 3(d)]. The twofold
degeneracy of M1 will not be eliminated when only the T -
broken term is introduced into this system [Fig. 3(e)]. This
means that the distributions of these edge states corresponding
to M1 and M2 will be changed if their degeneracy is eliminated
after PT -broken. On the other hand, at about 38 THz, a pair
of phonon modes with a linear crossing point labeled as M3

in Fig. 3(e) appear in the full band gap, which corresponds
to the nonzero Chern number of the bulk band [Fig. 2(d)].
Meanwhile, the armchair edges of graphene ribbons can also
possess phonon edge states in the full band gap at about 38
THz (The details are shown in the Supplemental Material
[44]). Since no bulk modes exist in the full gap, M3 cannot
scatter into the bulk of the ZGNR. Besides, based on the TB
Hamiltonian without ASR correction, the phonon dispersions
with P-broken and T -broken have also been calculated, and
the results generally have a large deviation from the case with
ASR, as shown in the Supplemental Material [44].

To make this more clear, as shown in Fig. 4(e), we draw
the state distributions of some representative points labeled in
Figs. 4(a)–4(d), which are the zoom-in local phonon disper-
sions corresponding to the areas with purple dashed frame in
Figs. 3(c)–3(e). M1 will keep twofold degeneracy when the
system have P symmetry, and M2 will keep twofold degener-
acy when the system have PT symmetry. Therefore, Pa1/Pa2,
Pa′′

1/Pa′′
2, and Pb1/Pb2 possess states that are localized on

the upper and lower edges of ZGNR simultaneously. When
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FIG. 3. Phonon dispersions of ZGNR under various circumstances. (a) Schematic of the ZGNR. The xdirection has periodicity and the
ydirection has a vacuum layer of 20 Å. (b), (c) Phonon dispersions of ZGNR with T P symmetry with and without the correction of ASR,
respectively. The acoustic modes appear after the correction. (d), (e) Phonon spectrum of ZGNR with P-broken and T -broken based on the
correction of ASR, respectively. There are three pairs of phonon modes labeled as M1, M2 and M3 in the band gaps at about 16 THz and 38
THz around X. The insets in (b)–(e) are the zoom-in local phonon dispersions around 	.

the degeneracy is eliminated, the distributions of these edge
states corresponding to Pa′

1/Pa′
2, Pb′

1/Pb′
2, and Pb′′

1/Pb′′
2 are

only localized on one edge of ZGNR. Further, the local states
of Pc1/Pc2 represent the standard Chern insulator topological
nontrivial edge states.

We further compute the LDOS and phonon transmission
spectra of ZGNR by iterating the surface Green’s functions
with T -broken. Figures 5(a)–5(c) show the projected LDOS
of the down edge, bulk, and up edge of ZGNR, respectively.
Obviously, M2 is split into two different phonon modes, which
are localized on the lower and upper boundaries of ZGNR
respectively, and so does the M3. On the other hand, M1 main-
tains a twofold degeneracy, while being localized on the two
boundaries. The effects of disorder on transmission spectrum
are shown in Fig. 5(d). Here, we regulate the disorder by dop-
ing different carbon isotopes with the concentration of 10%
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FIG. 4. Local states distribution of ZGNR in real space. (a)–
(d) phonon dispersions corresponding to the areas with purple dashed
frame in Figs. 3(c)–3(e). Some points with qx = 0.45 are marked on
the phonon band structure. (e) The local states of ZGNR correspond-
ing to the points marked in (a)–(d).

randomly. We can find that the total probability of phonon
transmission decreases as the mass of the isotope increases,
except for the one-way edge states within the bulk gap at about
38 THz. This is exactly the standard feature of surface states
that are immune to backscattering in Chern insulators.

Discussions and perspectives. Our results show that, in
order to get a phonon spectrum with reasonable acoustic
branches when dealing with open boundary phonon systems,
we should modify the on-site terms of the TB Hamiltonian ac-
cording to the ASR. In practice, we usually obtain the on-site
terms according to Eq. (4) to satisfy the ASR naturally rather
than correction. The ASR makes the part of Hamiltonian
corresponding to the surface atoms no longer periodic. Thus,
the surface part should be treated as scattering regions when
solving the Green’s functions. Furthermore, graphene, with
space group P6/mmm (No. 191), is a typical two-dimensional
honeycomb lattice material and an ideal platform for real-
izing various novel physical effects [67,68]. The topological

FIG. 5. Local density of states and transmission spectrum with
the T symmetry broken. (a)–(c) Density of states projected onto the
down edge, bulk and up edge of ZGNR, respectively. (d) Phonon
transmission under different carbon isotope doping, where the
doping concentration is always 10%. The probability of phonon
transmission decreases as the mass of the isotope increases, except
for the one-way edge states within the bulk gap.
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properties of electrons and phonons in graphene tend to be
robust to environmental changes, so that carbon allotropes
constructed from graphene can often exhibit excellent proper-
ties in various aspects. Therefore, the tuning of the topological
properties of surface states by various means, such as gating
[69,70] and twisting [71,72], also needs further investigation.

Conclusion. In conclusion, we show the necessity of ASR
for the construction of the phonon TB Hamiltonian. Fur-
thermore, we find topological phonons in both acoustic and
optical branches of graphene, and the corresponding topolog-
ically nontrivial edge phonon modes are also observed. It is
worth mentioning that the diverse topological phonon states
in graphene respond differently to the PT symmetry of the

system. Interestingly, the distributions of some edge states
can mutate from two edges of the nanoribbon to one edge at
the same time as the band splitting when the PT symmetry
is broken. These results indicate that graphene is indeed an
ideal platform for realizing phonon topological effects, and
it is very possible to realize novel physical effects such as
phonon-based information conduction, quantum interference,
thermal superconductivity, and other phononic devices based
on this in the future.
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