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Exciton-polaritons in an optical microcavity can form a macroscopically coherent state despite being an
inherently driven-dissipative system. In comparison with equilibrium bosonic fluids, polaritonic condensates
possess multiple peculiarities that make them behave differently from well-known textbook examples. One such
peculiarity is the presence of dark excitons which are created by the pump together with optically active particles.
They can considerably affect the spectrum of elementary excitations of the condensate and hence change its
superfluid properties. Here, we theoretically analyze the influence of the bright and dark “reservoir” populations
on the sound velocity cs of incoherently driven polaritons. Both pulsed and continuous-wave pumping schemes
characterized by essentially different condensate-to-reservoir ratios are considered. We show that the dark
exciton contribution leads to considerable lowering of cs and to its deviation from the square-root-like behavior
on the system’s chemical potential (measurable condensate blueshift). Importantly, our model allows us to
unambiguously define the density of dark excitons in the system by experimentally tracking cs against the
condensate blueshift and fitting the dependence at a given temperature.
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Strong coupling between light and matter modes in-
side a semiconductor microcavity with embedded quantum
wells results in the appearance of hybridized quasiparticles:
exciton-polaritons. As interacting bosons, they demonstrate
macroscopic coherence [1] and quantum properties [2], and at
the same time also the ability to propagate without friction,
displaying the most remarkable collective phenomenon of
superfluidity [3–6].

Polariton Bose condensates are regularly achieved at ele-
vated temperatures (from 4 K to room T ) in a nonequilibrium
setting [7–10]. Typically, an excitation laser is tuned either
in resonance with the lower polariton branch (LPB) or high
above the exciton dispersion, leading to the formation of the
so-called reservoir that relaxes to the LPB and eventually into
the ground state. Due to a finite lifetime, the polariton popu-
lation is decaying in time after the excitation pulse, or needs
to be constantly replenished by means of continuous pump-
ing. Such a driven-dissipative nature of the system leads to
modifications of the elementary excitation spectrum [11–14]
and to violation of the Galilean invariance and Landau cri-
terion [15–17], all of which are essential for understanding
the specifics of polariton superfluidity. The main challenge
in building self-consistent descriptions is the impossibility
to apply the equilibrium microscopic approach developed by
Bogoliubov [18]. One is forced to either neglect the effects
of gain and dissipation [19] or build phenomenological de-
scriptions based on the Gross-Pitaevskii-like equation (GPE)
for the condensate coupled to the rate equation for the ex-
citonic reservoir [11–17]. In the latter case, for a better
correspondence with experimentally observed dynamics, the
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high-energy reservoir can be split into two parts [20–22],
the “inactive” population directly created by the pump and
the “active” reservoir that feeds the polariton condensate [the
schematics is shown in Fig. 1(a)]. Reference [23] considers
the model of three reservoirs: inactive, active, and dark. Dark,
or spin-forbidden (J = ±2), excitons are injected in the sys-
tem at nonresonant excitation together with bright (J = ±1)
exciton populations (overall, there are four exciton branches
per each quantum well filled from the relaxing charge car-
riers). Current studies show that such a dark reservoir can
be highly populated [24] and long lived [25]. However, its
influence on polariton properties is mostly unexplored.

GPE-based approaches describe reasonably well the dy-
namics of macroscopically populated polariton condensates.
At the same time, the Bogoliubov spectra derived for the
excitations on top of such driven-dissipative GPEs reveal ei-
ther a gapped or diffusive real part of the dispersion [11–13],
which does not correspond to experimental observations to
date [26–30]. A combined GPE-Boltzmann equation for the
condensate [14] recovers the gapless, equilibriumlike lin-
earization of the excitation spectrum at small momenta, with
the sound velocity defined by the condensate density n0,

cs =
√

gX 4
0 n0/mLP, where mLP is the lower polariton effective

mass, g the exciton-exciton interaction constant, and Xp the
exciton Hopfield coefficient at momentum p. A similar re-
sult was obtained in Refs. [15–17,31] for resonant excitation.
In nonresonant pumping scheme experiments, however, the
slope of this linear part was shown to depend on the chem-
ical potential (observed condensate blueshift) controversially
for different temperatures [27,28], and even to deviate from
the square-root scaling law [32]. This controversy indicates
that the effects of finite temperature and the optically dark
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FIG. 1. (a) Schematic illustration of a nonresonantly pumped
polariton system: The hot electron-hole plasma (inactive reservoir)
is relaxing towards both bright and dark exciton states, forming the
populations of polaritons along the LPB (black solid line) and dark
reservoir (gray shaded dashed line). Noncondensate polaritons in
turn relax towards the lowest-energy state to form a quasiequilib-
rium condensate blueshifted due to interactions. The green solid line
shows the Bogoliubov branch of excitations. (b), (c) Temporal evo-
lution of the polariton (solid lines) and dark reservoir (dashed lines)
populations in the case of (b) pulsed and (c) cw pumping, according
to the dynamical equations (4). In (b), the red arrow indicates the mo-
ment of time when the densities reach the maximum after the arrival
of the pulse. The initial polariton density is n(0) = 1.8 × 1011 cm−2,
and the initial reservoir densities are nD(0) = 0.9, nin(0) = 1.7 ×
1012 cm−2 (blue) and nD(0) = 1, nin(0) = 1.5 × 1012 cm−2 (green);
R−1

p = 3 ns. In (c), P = 3Pth (green), P = 4Pth (blue), with P̃ =
0.25P and Rcw = 0.1 × 10−5 μm2/ps. The other parameters for both
cases γ −1

in = 2.5 ns, γ −1
D = 0.5 ns, D−1 = 30 ns, γ −1 = 180 ps.

reservoir on the elementary excitations of polariton conden-
sates are poorly understood. The aim of the current Letter is to
provide a stitching of the finite-temperature theory [19] with
a simple phenomenological rate-equation model that allows
addressing the situations with large reservoir-to-condensate
ratios [32,33].

We start our theory with a brief discussion of the results
derived in Ref. [19] where noncondensed polaritons (active
reservoir) as well as the reservoir of dark excitons are rig-
orously, rather than phenomenologically, included into the
self-consistent Hartree-Fock-Bogoliubov (HFB) description
of exciton-polariton gases at finite temperatures. It was shown
that the nonparabolicity of the LPB, nonzero temperature, and
the presence of dark excitons renormalize the Bogoliubov ex-
citation spectrum. The corresponding sound velocity at p → 0
is

cs =
√

gX 4
0 n0

mLP

(
1 + 2μ√

(h̄�)2 + �2

)
, (1)

where h̄� and � are the Rabi splitting and the detuning of the
cavity photon from the exciton resonance, respectively, and
the chemical potential

μ = gX 2
0

(
X 2

0 n0 + 2n′
X + nD

)
(2)

contains contributions from the integrated dark exciton den-
sity nD and the density of noncondensed bright excitons at a
given temperature

n′
X =

∫
X 2

p

〈
P̂†

p P̂p
〉 dp
(2π h̄)2

. (3)

The noncondensate part of the polariton field P̂p defining (3)
at the same time defines the integrated density of the active
reservoir n′ = ∫ 〈P̂†

p P̂p〉dp/(2π h̄)2 distributed along the whole
nonparabolic LPB. This way, the active reservoir consists of
noncondensate polaritons n′, while only their excitonic frac-
tion n′

X contributes to the blueshift. The density of polaritons
is given by the sum n = n0 + n′, and the total reservoir density
is defined as nR = n′ + nD. Within the model of Ref. [19],
all the densities n0, n′, nD are equilibrium and dependent
on the temperature. The predictions (1) and (2) and the cor-
responding dependence cs(μ) match well the experimental
observations made at low T [27,28]. At the same time, the as-
sumption of equilibrium leads to nD � n, and the theory fails
to describe situations when different populations are defined
by the dynamical equilibration of the system rather than by
their thermal distributions.

Here, we consider the nonresonant excitation schemes and
develop a unified description for cases when the dark exciton
density is not small. As discussed in Ref. [16], the presence
of a reservoir defines a privileged frame of reference, that as-
sociated with the static condensate. If one considers a moving
polariton fluid, the effect of the reservoir on superfluid prop-
erties will be void as the condensate quickly leaves the area
of space overlapping with the reservoir populations. For this
reason, we limit ourselves to the most relevant case when the
polariton fluid is at rest. Figure 1(a) shows schematically how
the pump injects the high-energy population of charge carriers
which cool down, filling available energy states on the exciton
and lower polariton dispersions. The inactive reservoir nin is
therefore feeding both the dark exciton reservoir (all excitons
not converting into polaritons) and the polariton subsystem
on the excitonlike part of the LPB dispersion. We model the
dynamics using the following equations,

∂nin

∂t
= P − γinnin − Dnin − R(n)nin,

∂nD

∂t
= P̃ − γDnD + Dnin,

∂n

∂t
= −γ n + R(n)nin, (4)

where γin, γD, and γ are the decay rates of the inactive
reservoir, dark excitons, and polaritons (γ � γin), and D and
R(n) are the scattering rates from the inactive reservoir to
dark excitons and to polaritons, respectively. Pump enters the
equations for nin and nD as P and P̃. All the coefficients in
(4) can be defined from comparison with experiment (here,
Refs. [32,33]). The main difference in the model (4) compared
to the previously developed phenomenological approaches is
that it describes the dynamical feeding of the polariton system
with the total density n, wherein the equilibration between the
condensate n0 and noncondensate n′ particles is assumed to
be governed by temperature. Importantly, the simplicity of
Eqs. (4) allows an analytical solution and does not require
a numerical simulation. Typical solutions n(t ) and nD(t ) for
two different pump powers are shown in Fig. 1 for pulsed
[Fig. 1(b)] and cw [Fig. 1(c)] excitations.

For the case of pulsed excitation, to be able to apply
Eqs. (1) and (2) one has to assume that the decay of the system
after the pulse arrival is slow compared to thermalization time,
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so that at each moment of time the polariton subsystem may
be considered in quasiequilibrium. This is realized for high-
quality samples and (or) for positive detunings �. In this case,
we set P = P̃ = 0 in (4), introduce the initial values of all
densities nin(0), nD(0), n(0), and consider the scattering rate
to the condensate constant: R = Rp. According to the solution

n(t ) = n(0)e−γ t + Rpnin(0)[e−(Rp+D+γin )t − e−γ t ]

γ − γin − D − Rp
(5)

shown in Fig. 1(b), the dynamics of the polariton density
consists of an early-time faster decay and then a slower
decrease at later times due to the replenishment of polari-
tons from the long-lived inactive reservoir. The dark-exciton
reservoir population nD is decaying much slower than the
polariton density n [nD(t ) is obtained from (5) by exchang-
ing n(0), γ → nD(0), γD and Rp ↔ D]. At each t , one can
directly use nD to find the dark exciton contribution to the
blueshift (2). To define the contributions of the condensate n0

and the bright noncondensate excitons n′
X , for each n(t ) we

perform the self-consistent calculation at a given temperature
(here, T = 10 K) according to the approach developed in
Ref. [19]. This procedure allows us to retrieve the dependence
of the condensate-to-reservoir ratio on time which is shown
in Fig. 2(a). At all times the reservoir density in the system
is dominant (with nR/n0 decreasing from ≈5 to ≈2 at later
times) due to the large dark population nD, whereas the ther-
mal (bright) part of the reservoir n′ is small compared to n0.
Calculating the blueshift (2) at each t with the obtained densi-
ties, one can plot n0/nR vs μ [see Fig. 2(b)]. Obtained trends
are similar for all considered pump powers and interaction
strengths.

Now one can track the dependence of the sound velocity
in the polariton fluid both on time and on the blueshift μ.
In the equilibrium case at T = 0, one expects the square-
root scaling predicted by Bogoliubov [18], cB

s = √
μ/mLP,

while for the driven-dissipative case Ref. [14] reported c0
s =√

gX 4
0 n0/mLP. The calculations here are performed according

to (1). In Fig. 2(c) we plot the ratio cs/cB
s together with c0

s /cB
s

(the dark red dashed line). It is evident that at early times cs

is rapidly decreasing from the values of the order 0.4–0.5cB
s

with a pronounced minimum, and later recovers up to values
higher than those at the beginning. Notably, for c0

s /cB
s the

minimum coincides with the minimum of n0/nR independent
of the interaction strength or density [the gray dotted line
in Figs. 2(a) and 2(c) is a guide to the eye], while for cs

according to (1) the minimum shifts towards later times for
higher g and higher initial densities. The dependence cs(μ)
is presented in Fig. 2(d) for a fixed g. At larger blueshifts
(early times) cs ≈ cB

s /3 and shows a slight deviation from the
square-root dependence on μ due to the renormalization of
the lower polariton mass reported in Ref. [19]. This deviation
towards higher values at large μ appears regardless of the
dark reservoir contribution. At later times (corresponding to
μ < 2 meV), one sees the complete change of behavior with
cs increasing from the value cB

s /3 and following a linear rather
than a square-root-like dependence on μ. In Fig. 2(d), the
red dotted line shows an analytical fit c0 + c1μ suggested
in Ref. [32] to describe experimental data. The dependence
c0

s (μ) shows agreement with our calculation at small μ and

FIG. 2. Pulsed excitation. (a) Evolution of the condensate-to-
reservoir ratio n0/nR, where nD(t ) and n(t ) are acquired from (4),
n0 and n′ for each n are calculated within the HFB theory, and nR =
n′ + nD. (b) n0/nR vs the observable blueshift μ for each moment
of time during the system evolution. Note that smaller values of μ

correspond to later times. (c) Temporal dependence of the ratio cs/cB
s ,

with cs given by (1) and the Bogoliubov value cB
s = √

μ/mLP. In
(a)–(c), different lines are plotted for two different exciton interaction
strengths g and initial densities n(0) as indicated in (a), nD(0) =
0.9 × 1012 cm−2, nin(0) = 1.5 × 1012 cm−2. (d) The sound velocity
cs vs μ showing the deviation from the square-root dependence (the
gray dotted lines) on the blueshift. The red dotted line displays
the linear fit c0 + c1μ suggested in Ref. [32] to match the exper-
iment, where c0 = 0.4 μm ps−1, c1 = 0.16 μm ps−1 meV−1. Solid
lines of different colors correspond to different initial reservoir
densities (as marked) with the same n(0) = 1.8 × 1011 cm−2 and
g = 1 μeV μm2. The dark red dashed lines in (c) and (d) show the
corresponding dependencies for c0

s according to Ref. [14]. In all
panels, the decay and scattering rates are the same as in Fig. 1(b),
h̄� = 15.8 meV, � = 1 meV, mLP = 8.6 × 10−5m0, T = 10 K.

a considerable lowering at larger values of the blueshift. This
indicates that at times when the reservoir density is large, its
influence on the sound velocity is significant.

We now turn to the case of cw excitation, where the system
reaches the state of dynamical equilibrium at a given pump
power P. Since the polariton density is not decaying, we
assume the scattering rate between the inactive reservoir and
the polaritons to be density dependent R = R(n) [11] and
consider the simplest scenario R(n) = Rcwn. Comparing the
steady-state solutions of (4) with zero initial conditions at
different values of P,

n = P

γ
− γin + D

Rcw
, nD = P̃

γD
+ γ

γD

D

Rcw
(6)

(above threshold), with the experimental data of Ref. [33]
[gray dots in Figs. 3(a) and 3(b)], we arrive at the same
decay and scattering rates characteristic for the sample of
Refs. [30,32,33], which underlines the consistency of our
model. For each n, we use the finite-temperature HFB model
to calculate n0 and n′. The dependence of the reservoir nR =
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FIG. 3. Continuous-wave excitation. (a) Condensate fraction as a
function of n0. The inset shows the condensate and reservoir densities
vs pump power. (b) The blueshift dependence on n0. In (a) and (b) the
gray dots with error bars show the experimental data of Ref. [33]
which were used to retrieve the pump, decay, and scattering rates
in Eqs. (4): P̃ = 0.25P, Rcw = 0.1 × 10−5 μm2/ps, with the other
parameters as in Fig. 1. (c) The dependence of the sound veloc-
ity cs on the observed blueshift μ for g = 1 μeV μm2. The gray
dotted line shows the dependence ∝√

μ. The dark red dashed line
represents c0

s (μ), and the analytical fit is
√

0.45(μ − 0.2)/mLP (red
dotted line). The inset shows the same for larger blueshifts, by setting
g = 6 μeV μm2. The analytical fit is

√
0.6(μ − 1.4)/mLP.

nD + n′ and condensate n0 densities on the pump power shows
a clear threshold behavior [see the inset of Fig. 3(a)], with
Pth = γ (γin + D)/Rcw. Figures 3(a) and 3(b) display the re-
sulting dependencies of the condensate fraction n0/(n0 + nR)
and blueshift μ on n0, respectively. From Fig. 3(a) one sees
that in this setting, contrary to the pulsed-excitation case,
the condensate-to-reservoir ratio is much larger, saturating
at n0 ≈ nR at high pump powers. Substituting the densities
into Eqs. (1) and (2), we plot in Fig. 3(c) the sound velocity
dependence on the blueshift. Similarly to the case of pulsed
excitation, cs is lowered compared to cB

s due to the presence
of the reservoirs. The dependence cs(μ) can be approximately
fitted by

√
c1μ + c2 [red dotted line in Fig. 3(c)], showing

that the sound velocity grows faster at smaller μ when the
reservoir population is dominant. The dark-red dashed line
shows the corresponding dependence c0

s (μ) which, as in the
previous case, goes lower than (1) at larger blueshifts.

Finally, we summarize in Fig. 4 the behaviors of the sound
velocity ratio to cB

s for both types of excitation, varying the
dark exciton population at a fixed pump power. One can see
that compared to the case nD � n where cs can be slightly
smaller or larger than cB

s as reported in Ref. [19], the ex-
perimentally relevant densities of dark excitons dramatically
alter the expected polariton sound velocities. As discussed
above, the dependence cs(μ) is most sensitive to the ratio
between the condensate and the reservoir densities in the
system. In the case of the pulsed pumping scheme [Fig. 4(a)],
this ratio changes with time and the dependence cs(μ) is
nonmonotonous, while staying in the range 0.3–0.7cs for
all considered nD. For cw excitation [Fig. 4(b)], just above
threshold (i.e., at small blueshifts and small n0/nR) the sound
velocity is very low, growing rapidly with P up to the values
0.5–0.85cB

s as the condensate fraction increases. Changing

FIG. 4. Sound velocity ratio to the Bogoliubov value cs/cB
s de-

pendent on the observable blueshift for (a) pulsed and (b) continuous-
wave nonresonant excitation schemes with different contributions
from the dark exciton reservoir, as marked. The solid (dashed)
lines are for g = 2.5(1) μeV μm2. In (a), n(0) = 1.8 × 1011 cm−2,
nin(0) = 1.5 × 1012 cm−2. All other parameters in both panels are
the same as in Figs. 2 and 3.

the interaction constant or (proportionally) all densities at
the same time effectively squeezes or stretches the curves
along the horizontal axis, defining the slope of the result-
ing dependence cs/cB

s (μ). Figure 4 thus shows families of
curves, particular cases of which were plotted in Figs. 2(d)
and 3(c) as dependencies cs(μ). Since the decay and scattering
rates in (4) can be found by fitting the observed condensate
photoluminescence using the expressions (5) or (6), mapping
of experimentally measured dependence cs(μ) in a relatively
wide range of blueshifts suggests a way to define the content
of dark excitons in the system at a given temperature and
pump power [34].

In conclusion, we developed an intuitive, analytically
solvable model based on the self-consistent HFB approach
and rate equations that allows investigating the influence of
dark excitons and the bright, thermally distributed polaritonic
reservoir on the sound velocity in nonresonantly pumped po-
lariton fluids. The only input parameters used are the decay
and scattering rates that can be found from fitting the ex-
perimental data. Our model allows us to directly obtain the
condensate-to-reservoir ratio, blueshift, and the sound veloc-
ity for both pulsed and cw excitation schemes. We show that
the sound velocity is dramatically affected when the dark
exciton density is large, and that it cannot be expected to
follow the square-root-like scaling with the blueshift predicted
by the equilibrium Bogoliubov theory. Most strikingly, since
in polariton experiments the blueshift and the slope of the
low-momenta elementary excitation spectrum can be mea-
sured independently, the mapping of such measurements on
the dependence cs(μ) can be used to define the density of dark
excitons which is generally elusive for observations by optical
means.
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