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Linking structure is a new concept characterizing topological semimetals, which indicates the interweaving of
gap-closing nodes at the Fermi energy (EF ) with other nodes below EF . As the number of linked nodes can be
changed only via pair creation or pair annihilation, a linked node is more stable and robust than ordinary nodes
without linking. Here we propose a type of linked nodal structure between a nodal line (nodal surface) at EF with
another nodal line (nodal surface) below EF in two-dimensional (three-dimensional) spinless fermion systems
with IT symmetry where I and T indicate inversion and time-reversal symmetries, respectively. Because of
additional chiral and rotational symmetries, in our system, a double band inversion creates a pair of linked nodes
carrying the same topological charges, and thus the pair is unremovable via a Lifshiftz transition, which is clearly
distinct from the cases of the linked nodes reported previously. A realistic tight-binding model and effective
theory are developed for such a linking structure. Also, using density-functional-theory calculations, we propose
a class of materials, composed of stacked bilayer graphene with Kekulé texture, as a candidate system hosting
the linked nodal structure.

DOI: 10.1103/PhysRevB.106.L121118

Introduction. Topological semimetals and nodal supercon-
ductors indicate the gapless topological phases with nodal
points (NPs)/nodal loops (NLs)/nodal surfaces (NSs) near
the Fermi energy (EF ) [1–36]. Normally, such a node is
characterized by its primary topological charge defined in
a lowest-dimensional manifold enclosing the node such
as a two-dimensional (2D) surface/one-dimensional (1D)
loop/zero-dimensional (0D) point enclosing a NP/NL/NS,
respectively, in a three-dimensional (3D) momentum space
[24,25]. Although the presence of a primary topological
charge indicates the local stability of the relevant nodal struc-
ture, it does not guarantee the global stability of the node
[25,26]. For example, a single NL or NS in 3D systems with a
primary topological charge can be annihilated via continuous
deformation [25–27].

Recently, it was found that there is a class of doubly
charged (DC) nodes with two distinct topological charges
which are more robust than ordinary singly charged nodes
[25–35]. Two important characteristics of DC nodes are as
follows. First, the number of DC nodes can be changed only
via pair creation or pair annihilation, that is, an annihilation
of a single DC node is not allowed [25,26]. Second, a pair
of DC nodes at EF are linked with another node below EF

[27,28,31–34]. For example, in 3D centrosymmetric systems
belonging to the Altland-Zirnbauer (AZ) [37,38] class AI and
CI, a doubly charged NL at EF is always linked with another
NL below EF [28,32].
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More recently, it is found that a doubly charged NS at
EF is linked with a NL below EF in AZ class BDI systems
with inversion symmetry [34]. The full list of such linking
structures and their relation with DC nodes were recently es-
tablished [34] within the framework of the AZ classification,
including an additional inversion I symmetry, dubbed the
AZ+I classification [27]. However, understanding the influ-
ence of additional crystalline symmetries, beyond the AZ+I
classification scheme, on the DC nodes with linking structures
is still an important open problem.

In this Letter, we propose a class of linked nodal structures
between two concentric NLs (NSs) at EF and another NL (NS)
below EF in 2D (3D) spinless fermion systems belonging
to the AZ+I class BDI with two extra symmetries: one is
a threefold rotation C3z about the z axis, and the other is a
chiral symmetry C ′ that is different from the intrinsic chiral
symmetry C of the class BDI. As both C and C ′ anticommute
with the Hamiltonian, their combination gives a commuting
symmetry OL ≡ iCC ′ which is local in the momentum k. In
2D systems, OL is nothing but the mirror Mz : (x, y, z) →
(x, y,−z) symmetry about the basal plane of the system or
a layer exchange symmetry of a 2D bilayer structure. When
such 2D bilayers are vertically stacked with weak interbilayer
coupling, OL still remains as an excellent k-local symmetry
of the resulting 3D structure, which supports linked NSs.
Interestingly, in this class of systems, a double band inversion
(DBI) creates two concentric NLs or NSs at EF that carry two
distinct 0D topological charges: one is Z2 type (Z0D

2 ) while
the other is Z type (Z0D). As the two NLs (NSs) at EF have
the same Z-type charges, their pair annihilation through a
Lifshitz transition is forbidden. Such a stability against the
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FIG. 1. (a) Linked nodes in 3D systems belonging to the AZ+I
class AI or CI. A monopole NL at EF (black loop) is linked with
another NL below EF (blue dotted loop). ZdD (ZdD

2 ) (d = 0, 1, 2)
near each node indicates its d-dimensional Z (Z2) charge. The rel-
evant nodal structure after merging of two monopole NLs is shown
in (b). Both the merged NL at EF and the NL below EF can be
annihilated. (c) Linked nodes in 2D systems belonging to the AZ+I
class BDI. A NL at EF (black loop) always accompanies a NP below
EF (blue dot). The relevant nodal structure after merging of two NLs
is shown in (d). Both the merged NL at EF and two NPs below
EF can be annihilated. (e) Linked nodes in 2D systems belonging
to the AZ+I class BDI with additional chiral and C3z symmetries.
±1 denotes OL eigenvalues. Two concentric NLs at EF accompany
another NL below EF . The merging process of two concentric NLs
at EF is described in (f). As they have the same Z0D, pair annihilation
is impossible. (g) Two concentric NLs generated by a single band
inversion. Two loops can be pair annihilated.

pair annihilation does not exist in any other DC nodes known
up to now.

We construct a realistic model and symmetry-based effec-
tive theory considering a Kekulé textured bilayer graphene
(BLG) and the related layered 3D structure as an example.
Also, using the ab initio band structure calculations, we pro-
pose a class of materials with the chemical formula AC12 (A =
Zn, Al, Be) in which the interplay of two distinct chiral sym-
metries and C3z protects the linked cylindrical NSs near EF .
We also show that breaking the chiral symmetries transforms
the NSs to NLs as realized in materials BC12 (B = Li, B, Mg)
in which NLs are protected by IT and Mz symmetry, where
T indicates time-reversal (T ) symmetry.

Double band inversion (DBI) and linking structure. A pair
of DC nodes with linking structure can be created via a DBI
process in which two valence and two conduction bands are si-
multaneously inverted. For instance, in a 3D system belonging
to the AZ+I class AI or CI, a DBI creates a pair of monopole
NLs at EF that carry both a 1D Z2 charge Z1D

2 (equivalent
to the π Berry phase) and a 2D Z2 monopole charge Z2D

2 as
described in Fig. 1(a) [28]. Each monopole NL at EF (black
loop) is always linked with another NL below EF (blue dashed
loop) [28]. When the band structure is smoothly deformed in
a way that two monopole NLs merge and turn into a single
trivial NL without monopole charge, both the trivial NL at EF

and the NL below EF can be continuously shrunk to a point
and then be annihilated [see Fig. 1(b)]. A similar deformation
is also possible in 2D systems belonging to the AZ+I class
BDI, where a NL at EF is linked with a NP below EF [34]
[see Fig. 1(c)]. When two DC NLs at EF are merged, both the
merged NL at EF and the NP pair below EF can be annihilated
as described in Fig. 1(d).

FIG. 2. (a, b, c, d) A double band inversion (DBI) process in
systems belonging to the AZ+I class BDI with an additional chiral
symmetry C ′. (e, f, g) The nodal structure corresponding to each
upper panel. (h, i) BDI process when extra C3z symmetry is included.
(j) The nodal structure corresponding to (i). The solid (dashed) lines
indicate the bands carrying +1 (−1) OL eigenvalues.

On the other hand, when an additional chiral symmetry
and C3z are supplemented to the 2D class BDI systems, a
distinct type of DC NLs with extra stability can be created
via a DBI. In this case, each of the NLs at EF carries two
distinct 0D charges (Z0D

2 and Z0D), and the two NLs at EF

are linked with another NL below EF as shown in Fig. 1(e).
Interestingly, when the two concentric NLs at EF are merged,
as they have the same Z0D charge, the merged NL also carries
a nonzero topological charge so that it cannot be annihilated.
Thus further deformation splits the merged NL into two DC
concentric NLs again as described in Fig. 1(f). We note that
the emergence of concentric DC NLs is a direct consequence
of a DBI. In contrast, when two concentric NLs are created
by a single band inversion between one valence and one
conduction band as in Fig. 1(g), the merging of two con-
centric NLs always leads to their pair annihilation and gap
opening.

Continuum Hamiltonian. A general DBI process of 2D
systems belonging to the AZ+I class BDI can be described
by the following four-band continuum Hamiltonian:

H (k) = p(k)σzτ0 + q(k)σzτx + r(k)σzτz + s(k)σyτy, (1)

where the functions p(k), q(k), r(k), and s(k) are even
in the momentum k. Using the Pauli matrices τx,y,z, σx,y,z,
2 × 2 identity matrices σ0, τ0, and the complex conjuga-
tion operator K , we choose the symmetry representation I =
σ0τ0, T = Kσ0τ0, and C = σxτ0, which satisfies (IT )2 =
C2 = 1. Also, the combination of IT and C gives a k-local
particle-hole symmetry P = IT C. Then the Hamiltonian sat-
isfies (IT )H (k)(IT )−1 = H (k), PH (k)P−1 = −H (k), and
CH (k)C−1 = −H (k), which are the defining property of the
AZ+I class BDI. We also impose I symmetry as the DBI
occurs at the � point. When an additional chiral symmetry
C ′ = σyτ0 exists, we find s(k) = 0 and [H (k),OL] = 0, where
OL = iCC ′.

To describe a DBI process, we assume p(k) = M, q(k) =
k2 − m, r(k) = s(k) = 0 where M > 0 and m are constants.
As shown in Fig. 2, when m < −M, we have a gapped band
structure. When −M < m < 0, a NL appears at EF . When
0 < m < M, another NL emerges below EF . Finally, when
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FIG. 3. (a) Structure of Kekulé textured AA-stacked bilayer graphene (KABLG). t1 (t2) indicates the intracell (intercell) hopping repre-
sented by solid (dashed) bonds. The relevant first Brillouin zone (BZ) is shown in the inset. (b, c, d) The band structures of KABLG when
(b) t2 < t1 (anti-Kekulé texture), (c) t2 = t1, and (g) t2 > t1 (Kekulé texture). In all cases, the same interlayer coupling |t3| < |t1|, |t2| is used. (e,
f) The band and nodal structures of KABLG near EF for parameters t1 = 1, t2 = 0.6, and t3 = 0.8. ±1 (λ, λ∗) denote the OL (C3z) eigenvalues.
(g, h) The band and nodal structures near EF when t3 = 1.2 after a Lifshitz transition of the black NL through the BZ boundary. In (e, f, g, h),
the red and black NLs are at EF while the blue NL is below EF . The magenta (green) NPs are below EF at the momentum K/K′ (�).

m > M, the second NL at EF is generated, and thus we have
two concentric NLs at EF linked with another NL below EF .
We see that although a linked nodal structure can be created
via a sequence of BDI process described in Figs. 2(a)–2(d),
the NLs at EF are created individually, not pairwise. However,
when C3z symmetry that imposes double degeneracy at k = 0
is supplemented, the DBI process for the pair creation of
concentric NLs can be completed as shown in Figs. 2(h)–2(j).

To implement C3z symmetry, we take a matrix repre-
sentation C3z = ei 2π

3 σ0τy satisfying (C3z )3 = 1, [C3z, T ] = 0.
The C3z invariance of the Hamiltonian can be satisfied by
choosing p(k) = M + 2α(k2

x + k2
y ), q(k) = −2αkxky, r(k) =

α(k2
x − k2

y ). Assuming α > 0, we have a gapped band struc-
ture when M > 0, as shown in Fig. 2(h), in which double
degeneracy occurs at � because the bands have complex
C3z eigenvalues λ = ei2π/3 and λ∗. One can also show that
the OL eigenvalues of the unoccupied (occupied) bands are
+1 (-1) after DBI, and all four bands have the same in-
version eigenvalues at �. When M < 0, two NLs appear at
EF with radii

√|M|/α and
√|M|/3α, respectively. Between

them, another NL with a radius
√|M|/2α appears below

EF .
Topological charges. Let us define Z0D and Z0D

2 , explicitly.
First, Z0D is defined by the eigenvalues (±1) of OL symmetry.
At a given momentum k, we denote the number of occupied
bands with the positive (negative) OL eigenvalues by η+(k)
(η−(k). Also, we define 	η(k) = η+(k) − η−(k). For a given
NL, we pick two momenta kin and kout, which are inside
and outside of the loop, respectively. Then we define Z0D ≡
1
2 [	η(kout) − 	η(kin)]. One can easily show that Z0D = +1
for both NLs at EF in Figs. 2(d) and 2(i).

Another charge Z0D
2 is defined as follows [27]. Due to

chiral symmetry, H (k) can take a block off-diagonal form as
H (k) = ( 0 A(k)

AT (k) 0

)
, where A(k) denotes a real matrix. Then

Z0D
2 is defined as

Z0D
2 = sign{detA(kin ) · detA(kout)}. (2)

It is straightforward to show that the two concentric NLs at
EF in Figs. 2(d) and 2(i) have opposite Z0D

2 charges.
Kekulé-textured AA-stacked bilayer graphene (KABLG).

The proposed 2D linked nodal structure can be realized in
AA-stacked bilayer graphene (BLG) with Kekulé-O distortion
[40,41], which indicates the bond modulation pattern shown
in Fig. 3(a) in which the intracell hopping t1 within a hexag-
onal unit cell is distinguished from the intercell hopping t2.
When two graphene layers with Kekulé-O distortion are verti-
cally stacked (AA stacking), we obtain the KABLG, which
can be realized by inserting metal ions between graphene
layers.

We consider the following 12 × 12 tight-binding Hamil-
tonian for KABLG, HKABLG = σ0 ⊗ HKSLG + σx ⊗ Hc, where
the Pauli matrices σx,y,z denote the layer degrees of free-
dom and σ0 is the related identity matrix. HKSLG indicates
the Hamiltonian for a Kekulé-textured single layer graphene
(KSLG) given by HKSLG = −∑

<i, j> ti jc
†
i c j + H.c., where

ci denotes the electron annihilation operator at the ith site,
and ti j = t1 (ti j = t2) for the intracell (intercell) hopping be-
tween nearest-neighboring sites. Hc = diag[t3, t3, t3, t3, t3, t3]
describes the interlayer hopping with the amplitude t3 for
nearest neighboring atoms between layers. HKABLG has I,
T , C, C ′ symmetries represented by I = σx ⊗ τx ⊗ I3, T =
Kσ0 ⊗ τ0 ⊗ I3, C = σz ⊗ τz ⊗ I3, C ′ = σy ⊗ τz ⊗ I3, where I3

is a 3 × 3 identity matrix related to the trimerization of the
graphene unit cell induced by Kekulé-O distortion. The Pauli
matrices τx,y,z denote the sublattice degrees of freedom, and
τ0 is the related identity matrix.

Depending on the type of metal ions, the textured lattice
can be in a phase with t2 < t1 (anti-Kekulé distortion) or t2 >
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FIG. 4. (a) Schematic structure of ZnC12, a stacked BLG system with Zn atoms between neighboring BLGs. Weak (repulsive) interaction
between Zn atoms and BLG induces Kekulé-O type distortion of BLGs. Here BL (VS) indicates the bilayer (vdW spacing). (b) Schematic
structure of LiC12 where strong interaction between Li+ ions and neighboring graphene layers gives intercalated bilayers (IBLs). The red
dashed vertical lines in (a, b) represent the unit cell length along the z direction. (c, e) Bulk band structures of (c) ZnC12 and (e) LiC12.
Blue shaded regions represent the nodal degeneracies with close-up views in the inset. ±1 represents OL (Mz) eigenvalues in (c) [(e)].
(d) Schematic plot of the cylindrical concentric NSs at EF (blue) of ZnC12 linked with another NS below EF (red). (f) NLs of LiC12 on the
kz = 0 plane protected by IT and Mz symmetries.

t1 (Kekulé distortion), as shown in Figs. 3(b)–3(d). In both
cases, the nonzero interlayer hopping (t3) pushes the gapped
band structure of each textured graphene layer upward and
downward in energy, respectively, which generates linked NLs
similar to those in Fig. 1(e).

The low-energy band structures are similar in both t2 < t1
and t1 < t2 cases. For convenience, here we focus on the
t2 < t1 case. The t2 > t1 case is discussed in the Supplemental
Material (SM) [39]. As shown in Figs. 3(e) and 3(f), the band
and nodal structures of the four bands near EF are identical to
those in Figs. 2(i) and 2(j) with linked NLs. As the two NLs at
EF carry the same Z0D charge, they cannot be pair annihilated
through merging.

As shown in Figs. 3(g) and 3(h), as t3 increases, the size
of the outer NL at EF becomes larger, and after touching
the BZ boundary, it splits into two NLs encircling K and K ′,
respectively. Interestingly, each of this NL develops another
type of the linked nodal structure with a NP below EF [34]. As
each NL at K or K ′ is DC, it cannot be annihilated separately
(see SM [39]). This is another way that the stability of two
concentric NLs is manifested.

Candidate materials. We propose a class of 3D materials
with chemical formula MC12 (M: a metal ion) as a candi-
date system that exhibits the linked nodal structure discussed
above. We note that although the discussion up to now has
been focused on 2D bilayer systems, the same idea can be
applied to 3D systems obtained by vertical stacking of 2D
bilayers. The linked concentric NLs in 2D bilayer systems can
be naturally extended to the linked concentric NSs, as long as
the coupling between neighboring bilayers is weak enough so
that the system preserves the same symmetries including C
and C ′.

MC12 has a hexagonal crystal structure with space group
P6/mmm, composed of van der Waals (vdW) stacking of
BLGs with intercalated M ions. Specifically, in ZnC12 shown
in Fig. 4(a), the chemical interaction between Zn and C atoms
is relatively weak, which can be supported by the fact that the
optimized bond distance between Zn and C atoms is 3.40 Å,

which is larger than the sum of their vdW interaction lengths
3.10 Å. Although chiral symmetry is not exact in any material,
it is an excellent symmetry in ZnC12 due to the weak inter-
action between BLG layers. Accordingly, ZnC12 can support
linked cylindrical NSs.

The electronic structures of ZnC12 are shown in Fig. 4(c).
In ZnC12 with OL symmetry, a DBI appears between two pairs
of bands with different OL eigenvalues along �-A direction.
The DBI generates two NSs near EF and another NS below
the EF between them, as schematically described in Fig. 4(d).
Similar linked NSs can appear in various materials, including
AlC12, BeC12 in which a DBI occurs along the entire �-A
direction (see SM [39]).

On the other hand, the situation changes dramatically in a
related compound LiC12 [see Fig. 4(b)]. In LiC12, the opti-
mized distance between Li and C atoms is 2.35 Å, which is
much smaller than the sum of their vdW interaction lengths
3.52 Å. This is because of the ionic nature of Li atoms which
strongly interact with the carbon pz orbitals in graphene.
Thus, in contrast to ZnC12, LiC12 allows the second-nearest-
neighbor hopping between the layers mediated by Li ions,
which breaks both chiral symmetries. Thus, the NSs, which
exist when chiral symmetries present, are mostly gapped ex-
cept in the kz = 0 plane. However, as the IT symmetry still
exists, the compound can have NLs [28] with drumhead sur-
face states on the boundary. The NLs in LiC12 are shown in
Fig. 4(f), and the related surface states are described in the
SM [39].

Discussions. Finally, let us discuss the experimental fea-
sibility of our proposed model and related materials. Various
Kekulé-O ordered BLG systems have been synthesized and
studied using angle-resolved photoemission spectroscopy
(ARPES) and transport measurements [40,42–46]. For in-
stance, the gap opening at the Dirac cone due to chiral
symmetry breaking was observed in LiC12 from ARPES
measurement [40]. Similarly, CaC12 was also synthesized ex-
perimentally to study superconductivity [44,45]. Moreover,
the chemical stability of ZnC12 was theoretically shown by
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Srimanta et al. [47] in which the binding energies of vari-
ous transition metal intercalated BLG were computed [47].
Various other types of atoms such as Yb [48], Eu [48], and
Ge [49] have been intercalated in similar BLG structures, and
their electronic structures have been explored using ARPES.
All these works strongly support the possible experimental
realization of our predicted linked nodal structures in future
experiments. As the topological charges of nodes are closely
tied in with the linking structure between nodes, the mea-
surement of the global band structure of linked nodes would

provide a direct experimental evidence of nontrivial topologi-
cal charges of the linked semimetals proposed in this work.
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