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Topological phase transitions involving intrinsic topological orders are usually characterized by qualitative
changes of ground state quantum entanglement, which cannot be described by conventional mean-field theories
with local order parameters. Here, we apply the lattice Chern-Simons theory to study frustrated quantum magnets
and show that the conventional concepts, such as the order parameter and symmetry breaking, can still play
a crucial role in certain topological phase transitions. The lattice Chern-Simons representation establishes a
nonlocal mapping from quantum spin models to interacting spinless Dirac fermions. We show that breaking
certain emergent symmetries of the fermionic theory could provide a unified approach to describing both
magnetic and topological orders, as well as the topological phase transitions between them. We apply this
method to the perturbed spin-1/2 J1-J2 XY model on the honeycomb lattice and predict a nonuniform chiral
spin liquid ground state in the strong frustration region. This is further verified by our high-precision tensor
network calculations. These results suggest that the lattice Chern-Simons theory can simplify the complicated
topological phase transitions to effective mean-field theories in terms of fermionic degrees of freedom, which
lead to different understandings that help to understand the frustrated quantum magnets.

DOI: 10.1103/PhysRevB.106.L121117

I. INTRODUCTION

Intrinsic topological orders (TOs) [1–3] and topological
phase transitions (TPTs) [4–12] have constituted one of the
most active fields since the discovery of fractional quantum
Hall effect [13–16]. In stark contrast with the conventional
long-range orders, the TOs are featured by their ground
state degeneracy [17] and the emergence of anyonic excita-
tions [18,19]. Because of these distinct physical natures, it
is widely believed that the TPTs are characterized by qual-
itative changes of systems’ quantum entanglement, thus are
generally beyond the conventional mean-field theories based
on local order parameters.

A prominent example of TOs is the quantum spin liquids
(QSLs) stabilized in two-dimensional (2D) quantum mag-
nets under strong frustration [20–25]. They are disordered
quantum states with fractionalized excitations. Moreover, they
display the emergent gauge fluctuations [26], the key feature
of QSLs. In contrast, the gauge fluctuations become unimpor-
tant and negligible when magnetic orders are formed under
weak frustration. The different behaviors of the gauge de-
grees of freedom in the two types of phases pose significant
challenges to understanding the TPTs between them, which
evoked extensive investigations in the last decade [12,27–32].
The main difficulty comes from the different languages used
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for the QSLs and the magnetic orders. The former is described
by fractionalized excitations and emergent gauge fluctuations,
while the latter by spin waves or magnons.

In this work, we apply the flux attachment [33–44] to frus-
trated quantum magnets, and propose a mean-field theory that
describes the magnetic orders, QSLs, and the TPTs between
them in a unified way. We propose a nonlocal mapping from
the quantum spin models to strongly correlated spinless Dirac
fermions, as indicated by Figs. 1(a) and 1(b). This mapping
is based on the lattice Chern-Simons (CS) representation of
hard-core bosons, a lattice version of the flux attachment.
When applied to frustrated quantum magnets, some symme-
tries implicit in the original spin basis [45,46] can emerge in
the Dirac fermion system. Moreover, breaking these emergent
symmetries leads to mean-field descriptions not only for the
magnetic orders but also for certain QSLs.

More specifically, breaking the emergent symmetries re-
sults in different fermion orders that gap out the Dirac nodes.
Although these orders describe short-range entangled states
in the fermion basis, they could characterize certain TOs with
long-range quantum entanglement in the original spin basis,
since the two bases are related to each other by a nonlocal
transformation. Particularly, we show that the superconduct-
ing phase in the fermion basis corresponds to the planar
Néel antiferromagnetic order (AFM) in the spin language
[Fig. 1(c)], and the topological excitonic phase formed by the
fermions essentially describes the chiral spin liquids (CSLs)
with semionic excitations [Fig. 1(d)]. We further apply our
scheme to study the perturbed spin-1/2 J1-J2 XY model on
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FIG. 1. The lattice CS representation of a quantum spin model.
The spin-1/2 XXZ models (a) are mapped in low energy to a system
of spinless Dirac fermions with inter- and intravalley interactions
(b). The interactions can favor different fermion orders. For exam-
ple, the Dirac fermions can form Cooper pairs, leading to the CS
superconductor as shown in (c). The Dirac fermions can also form
particle-hole pairs, generating a topological CS exciton insulator
with nonzero total Chern number, as indicated by (d).

the honeycomb lattice. A TPT from the planar Néel AFM to a
nonuniform CSL [37] is found, which is further confirmed by
our tensor network calculations [47–52]. These results suggest
possibilities to unify the magnetic orders and QSLs in simple
mean-field theories after properly implementing the lattice
CS theory, which could be useful to explore novel phases
and unconventional phase transitions in frustrated quantum
magnets.

II. LATTICE CS THEORY OF QUANTUM MAGNETS

A. Mapping to fermionic theory

We start from the general quantum spin XXZ model

HXXZ =
∑
r,r′

(Jr,r′/2)(Ŝ+
r Ŝ−

r′ + Ŝ−
r Ŝ+

r′ ) + Jz
r,r′ Ŝz

rŜz
r′ , (1)

where Ŝ±
r is the spin-raising/lowering operator at site r.

Jr,r′ , Jz
r,r′ > 0 and they involve couplings up to the nth near-

est neighbor (NN), forming the n-dimensional vectors J =
(J1, J2, . . . , Jn), Jz = (Jz

1, Jz
2, . . . , Jz

n ).
The spin-raising and lowering operators, S±

r , of Eq. (1) are
statistically equivalent to hard-core bosons. Instead of resort-
ing to the parton representations, we write S±

r into spinless
fermions. This is desirable since Pauli’s principle automati-
cally prohibits double occupancy. In addition, to enforce the
bosonic mutual statistics, a flux quanta must be attached to
each fermion as in Fig. 2(a). This constitutes an exact repre-
sentation of the elementary spin excitations [53].

It is well known that the flux attachment can be naturally
achieved by coupling the fermions to CS gauge field Aμ

[70,71], with the action

SSC = 1

4π

∫
d3r εμνρAμ∂νAρ. (2)

FIG. 2. (a) The spin-raising/lowering operators are represented
by spinless fermions attached to a flux quanta. (b),(c) With neglecting
gauge fluctuations, the π -flux (2π -flux) phase is found stable on
square (honeycomb) lattice. Consequently, spinless Dirac fermions
emerge in low energy as in Fig. 1(b).

For the quantum spin models in Eq. (1), the gauge field
essentially arises from the spin-spin exchange interactions.
This motivates us to introduce the following nonlocal trans-
formation between the spin and fermion basis [37–40], Ŝ±

r =
f ±
r U ±

r , where f ±
r are creation/annihilation operators of the

spinless fermions. U ±
r = exp[±ie

∑
r′ �=r arg(r − r′)nr′ ] are

nonlocal string operators, where nr denotes the particle num-
ber operator at site r, and e is the CS charge that takes value
of odd integers [37–39].

Inserting the nonlocal transformation to Eq. (1), we arrive
at a system of spinless fermions coupled to the CS gauge
field Aμ. In addition, the fermions are subject to local re-
pulsive interactions, originated from the Ising terms Jz

r,r′ in
Eq. (1). We firstly neglect the gauge fluctuations. Then, the
spinless fermions effectively move on the lattice with a flux
background. The flux can be self-consistently determined
by minimizing the system energy. For example, π -flux and
2π -flux phases can be obtained [72] on square and honey-
comb lattice, respectively, as shown by Figs. 2(b) and 2(c).
Consequently, spinless Dirac fermions emerge in low energy,
located at different valleys in momentum space as in Fig. 1(b).
Due to the vanishing density of states of the Dirac fermions,
the interactions arising from the Jz

r,r′ terms are irrelevant for
Jz

r,r′ � Jr,r′ .
After restoring the gauge fluctuations coupled to the Dirac

fermions, we generally obtain [53]

S =
N∑

a=1

∫
d3r f †

a,r i /D fa,r + SCS + . . . , (3)

where /D = σμ(i∂μ − eAμ), with μ = 0, 1, 2, and σμ is the
Pauli matrix defined in the sublattice space. r = (t, r), fa =
[ fa,A,r, fa,B,r]T is a Dirac spinor, where a = 1, 2, . . . , N de-
notes the N Dirac valleys located at the momentum Ka [38].
The ellipsis denotes the terms that generate higher-order dis-
persions, which are negligible near the Dirac points.

The advantages of the CS representation over the parton
representations are implicit in Eq. (3). First, the gauge field
here does not introduce any projective symmetries [26], since
the CS representation does not enlarge the Hilbert space.
Second, in analogy with the photon-induced electron-electron
interaction in quantum electrodynamics, the CS gauge field
can induce interactions between the Dirac fermions [70]. In-
tegrating out Aμ formally leads to

Hf =
N∑

a=1

∫
dr f †

a,rσ
(a) · (−i∇) fa,r +

M∑
i=1

wi(J)V (i)
int , (4)
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where V (i)
int , with i = 1, 2, . . . , M, are M-induced interactions,

which are nonlocal and model dependent. The weight of the
ith interaction, ωi(J), relies on J. We note that both inter-
and intravalley interactions can be generated, as indicated
by Fig. 1(b). The fermionic theory in Eq. (4) describes the
low-energy physics of the spin model in Eq. (1). In addition,
Eq. (4) enjoys the emergent gauge U(1) and the sublattice
symmetry, which are implicit in Eq. (1).

B. CS superconductors and CS excitonic insulators

It is known that strong nonlocal interactions can gap out the
Dirac semimetals [67,73], resulting in different types of long-
range orders. By analogy, fermion orders can spontaneously
take place in Eq. (4). Furthermore, since Eq. (4) is derived
in a nonlocal basis after CS transformation, one expects that
the fermion orders may capture the long-range entanglement
features of certain TOs in the original spin basis. We now
focus on two types of fermion orders, which break the two
above-mentioned emergent symmetries.

First, with breaking the emergent gauge U(1) symmetry,
the Dirac fermions form Cooper pairs, resulting in the CS
superconductors, as indicated by Fig. 1(c). Such paired states
are always found stable when the system has weak frustration
[38–40]. Interestingly, the CS superconductors exhibit physi-
cal correspondence with planar Néel AFMs. For example, the
two states share quantitatively the same excitations, such as
the low-energy Goldstone modes and Higgs modes [38,40].

It should be noted that the CS superconductor has concep-
tual analogy with the condensation of Schwinger bosons. In
the Schwinger boson representation, the magnetic orders can
be understood as condensed Schwinger bosons [74]. Here, the
condensation of paired f fermions also generates magnetic
orders. In addition, we also remark that the CS superconduc-
tors are distinct in nature from the normal superconductors.
In the traditional BCS theory, while the U(1) is Higgsed,
the remnant Bogoliubov–de Gennes (BdG) Hamiltonian still
has the fermion parity symmetry, leading to a Z2 topological
order. However, the situation of the CS superconductor is
different, and the gauge U(1) here is completely broken. The
self-consistent mean-field solution of the CS superconductors
[38] exists only in the form of a completely U(1) gauge sym-
metry broken BdG Hamiltonian from the DIII symmetry class
(which is a symmetry protected topological state) with certain
self-consistency relations. Therefore, the CS superconductors
have no Z2 topological order.

Second, the Dirac fermions can also be gapped out by the
spontaneous formation of excitons, i.e., particle-hole pairs,
leading to CS exciton insulators (EIs). From Eq. (4), the mean-
field Hamiltonian for these states can be derived in low energy
as HEI

a = vF (kxσ
x + kyσ

y) + χaσ
z, where χa is the exciton

mass for the ath Dirac fermion. Such states break the emergent
sublattice symmetry for the Dirac fermions, generating an
out-of-plane Néel AFM in the spin language. For these states,
each of the massive Dirac fermions exhibits the Chern num-
ber Ca = sgn(χa)/2, and the total Chern number is given by
Ctot = ∑N

a=1 Ca. We now consider the case with two massive
Dirac fermions of the same Chern number 1/2, thus Ctot = 1.
As shown in Fig. 1(d), this constitutes a topological CS exci-
ton insulator with spontaneous breaking of the time-reversal

FIG. 3. (a)–(c) Typical fermion orders and phase transitions pre-
dicted for the J1-J2 XY model. With increasing frustration, a TPT
from a CS superconductor to EIs is found, with two possible tran-
sition paths, A and B, leading to the topological and trivial EI,
respectively. (d) The condensation energy of the unperturbed XY
model as a function of veff , calculated for path A (the black data
curve) and B (the red data curve). (e) The condensation energy with a
flux perturbation of strength β. The energy splitting is found for large
veff , and the topological EI becomes more stable under perturbation.
The inset shows the energy difference between the two EIs, �E , as a
function of β, where veff/evF � = 2.3.

symmetry (TRS). In real space, the TRS breaking is essen-
tially attributed to the CS gauge flux coupled to the fermions,
as indicated by the staggering flux in Fig. 3(b). Clearly, this
is a close analogy with the Haldane’s Chern insulator on
honeycomb lattice [75]. With going beyond the mean-field
theory, the fluctuation of the exciton order is described by a CS
field theory with the coefficient Ctot/4π [71,76]. In addition,
the fermions are further coupled to the CS gauge field given
by Eq. (2). Therefore, the total effective field theory reads as

SEI = k

4π

∫
d3r εμνρAμ∂νAρ, (5)

where k = 2. This implies the emergence of semionic excita-
tions, a smoking-gun feature of the Kalmeyer-Laughlin CSL
[77]. Therefore, with breaking the emergent sublattice and
time-reversal symmetry, the resulting topological CS exciton
insulator essentially describes a nonuniform CSL originally
proposed in Ref. [37], which is a coexistence of CSL and the
out-of-plane Néel AFM.

Similarly, when the system breaks the emergent sublattice
symmetry while respecting the TRS, a topologically trivial
CS exciton insulator with Ctot = 0 will be generated. This
nontopological phase has a staggered chemical potential for
the fermions on different sublattices, and thus will display
a trivial out-of-plane Néel AFM order in the spin basis, as
shown by Fig. 3(c).

So far, we have shown that the fermion orders efficiently
describe corresponding phases in the original spin basis.
Importantly, this scheme can significantly simplify our un-
derstanding of TPTs. For example, the TPT from the planar
Néel AFM to the nonuniform CSL is now translated into the
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transition between the CS superconductor and the topological
CS exciton insulator.

III. A CONCRETE APPLICATION: THE PERTURBED J1-J2

XY HONEYCOMB MODEL

A. CS mean-field theory

We now explicitly discuss an application of the proposed
scheme by studying the J1-J2 XY model on the honeycomb
lattice, with a staggered-flux perturbation of strength β, as
shown by Fig. 3(b). For the pure XY model, an intermedi-
ate phase with an unexpected out-of-plane Néel AFM order
[68,78,79] has been numerically observed [68,78–81]. The
physical mechanism for this intermediate phase still remains
unclear.

We firstly consider the unperturbed case with β = 0.
After applying the CS transformation, we arrive at a low-
energy fermionic theory [53], Htot = ∑

a=± H0,a + V (1)
int +

V (2)
int , where

H0,a =
∑

k

f †
a,kavF k · σ (a) fa,k (6)

describes low-energy Dirac fermions with a momentum cutoff
�. The two valleys are denoted by a = ± and σ (+) = σ,
σ (−) = σT. vF = √

3εJ1/2, and ε is the lattice constant.
For J1 � J2, i.e., the weak frustration case, the dominant

fermion-fermion interaction is obtained as

V (1)
int =

∑
k1,k2,q

vαβρλ
q f †

a,α,k1
fa,β,k1+q f †

a,ρ,k2
fa,λ,k2−q, (7)

where v
αβρλ
q = −evF (σ i

αλδβρ + δαλσ
iT
βρ )Aj

q, with Aj
q =

2π iεi jq j/q2, εi j being the Levi-Civita tensor. Moreover,
with increasing J2/J1, we observe the growth of another
interaction,

V (2)
int = veff

∑
k1,k2,q

f †
a,α,k1

fa,α,k1+q f †
b,β,k2

fb,β,k2−q, (8)

where veff = 2π2/m2�vF and m = 2/3eJ2.
For V (2)

int � V (1)
int , we find that the CS superconductor is

stabilized, with a nontrivial SC order parameter �3 being
developed, as also proved by our previous works [38–40].
For V (2)

int � V (1)
int , we perform a detailed renormalization group

analysis followed by self-consistent mean-field calculations
[53]. We show that the s-wave intravalley EIs are most stable.
Consequently, the exciton mass χa is generated for the ath
valley. Moreover, it is found that the corresponding mean-field
energy does not rely on the sign of χa. Thus, two different
types of EI may emerge as closely competing ground states,
with Ctot = 0 and Ctot = 1, respectively, which are energeti-
cally degenerate in mean-field level.

So far, our approach predicts a transition from CS su-
perconductor to EI with increasing J2/J1 (proportional to
V (2)

int /V (1)
int ). In addition, because of the energy degeneracy of

the Ctot = 0 and Ctot = 1 states for V (2)
int /V (1)

int � 1, two transi-
tion paths are possible, as shown by Figs. 3(a)–3(c). Based
on the above scheme, both the paths enjoy the mean-field
description as

H (m)
tot = vF k · στ z + �̂kτ

+ + �̂
†
kτ

− + χτ (m)σ z, (9)

FIG. 4. The tensor network results for D = 12, β = 0.01. (a) The
planar Néel AFM order is stable for J2/J1 � 0.22 with nonzero Mxy

defined by Mxy = ∑
r

√
M2

r,x + M2
r,y/N . After crossing the TPT (the

shaded region), an intermediate state is found, displaying an out-of-
plane Néel AFM order, i.e., Mz = ∑

r |Mr,z|/N �= 0. A subsequent
phase transition takes place at larger J2/J1, which is not the focus of
this work. (b) The chirality order χ = 〈Ŝr1 × (Ŝr2 · Ŝr3 )〉 is evaluated
in each triangle from one sublattice. It displays a much larger value
in the intermediate phase. (c) The entanglement spectrum obtained
from a cut in an infinite cylinder with six unit cells along Ly. J2/J1 =
0.3 and ky is in units of π/3.

where we have introduced the Nambu-sublattice basis, �k =
[ fa,A,k, fa,B,k, f †

a,A,−k, f †
a,B,−k]T. The upper index m = A, B

denotes the two transition paths, and we defined τ (A) = τ 0,
τ (B) = τ z. �̂k is the superconductor order parameter in the
sublattice space [53]. Clearly, Eq. (9) describes the transitions
between the CS superconductor and EIs.

Figure 3(d) shows the self-consistently calculated conden-
sation energy versus veff for each path. With increasing veff ,
the system firstly stabilizes the CS superconductor (Néel AFM
state). It then evolves into a trivial CS exciton insulator (out-
of-plane Néel order). For even larger veff , the energy of the
Ctot = 0 and Ctot = 1 EI state become indistinguishable in
mean-field level, indicating that these two states are strongly
competing under strong frustration.

We now further consider the effect of the staggered-flux
perturbation with finite β. As shown by Fig. 3(e), an energy
splitting takes place for large veff under strong frustration, and
the topological EI (nonuniform CSL) has the lower energy.
Moreover, this state becomes more and more stable with larger
β, as shown by the inset to Fig. 3(e). As a result, we predict
that a novel phase transition from the planar Néel AFM to the
nonuniform CSL can be induced by the perturbation.

B. Numerical evidences

We now present the tensor network results on the
J1-J2 XY model with the flux perturbation β = 0.01. We
use imaginary-time evolution to determine the ground state
[53] that is represented as the projected entangled simplex
state ansatz [69,82]. As shown by Fig. 4(a), an intermediate
phase is found in J2/J1 ∼ (0.22, 0.33), which is disordered in
the XY plane but displays an out-of-plane Néel AFM order.
More interestingly, as shown by Fig. 4(b), we observe a
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significant enhancement of the chirality for J2/J1 ∼
(0.22, 0.33), indicating T ,P breaking of the intermediate
phase. The entanglement spectrum is also shown by Fig. 4(c),
where a nontrivial degeneracy 1, 1, 2, 3, 5, . . . is obtained,
which is consistent with SU(2)1 Wess-Zumino-Novikov-
Witten conformal field theory [83], suggesting the existence
of chiral edge state. All these numerical findings are in
support of our analytic predictions, indicating a TPT from
planar Néel order to the nonuniform CSL.

We have also calculated the J1-J2 honeycomb XY model
with turning off β. The out-of-plane Néel AFM as that
in Fig. 4(a) can still be obtained for J2/J1 ∼ (0.22, 0.33).
However, the chirality order in this region becomes vanish-
ingly small, in agreement with previous numerical studies
[68,78,79]. Moreover, in contrast with the case of β = 0.01,
we also calculated the entanglement spectrum for β = 0 but
no clear signature of spectrum degeneracy can be found. The
sharp difference between the unperturbed (β = 0) and weakly
perturbed (β = 0.01) case suggests that the J1-J2 honeycomb
XY model is highly sensitive to perturbations. This can be
understood from the field theoretical calculations in Fig. 3(d),
which indicate that there is accidental degeneracy between the
trivial (conventional out-of-plane AFM order) and the topo-
logical CS exciton insulator (nonuniform CSL). Thus, with
introducing a weak staggered-flux perturbation β, the nonuni-
form CSL wins in energetics and emerges as the ground state,
as indicated by Fig. 3(e).

We remark that the ground state seems to rely on the
specific forms of perturbation as well. For example, with the
staggered-flux perturbation β, both Ref. [78] and our calcu-
lations observe finite chirality order for J2/J1 ∼ (0.22, 0.33).
The latter is, however, absent if one instead introduces the
chiral term perturbation Jχ [79]. The different responses to
different perturbations in fact reflect the nonuniform nature of
the CSL. In the latter phase, the out-of-plane AFM Ising order
is locked to the chirality χ , and they occur simultaneously.
Thus, the nonuniform CSL could only be stabilized by those
perturbations that favor both the out-of-plane order and the
chirality. This is in key distinction with the conventional CSL
induced by the chiral term Jχ [79]. Although Jχ breaks TRS,
it does not favor the out-of-plane AFM order. Therefore, this
perturbation cannot generate nonuniform CSL as it could not
lift the accidental degeneracy in Fig. 3(d).

IV. CONCLUSION AND DISCUSSION

This work reveals a systematic approach to investigate
TPTs in frustrated quantum magnets. This is achieved by
first adopting the lattice CS representation and then integrat-
ing the CS gauge fluctuations. Then, we show that certain
TPTs can be captured by elegant mean-field theories of the
mapped interacting fermionic model. As a prototypical exam-
ple, the perturbed J1-J2 XY model on the honeycomb lattice
is carefully analyzed. For this model, we predict a TPT from
planar Néel AFM to nonuniform CSL. Large-scale tensor
network calculations also support this. Finally, an unconven-
tional mean-field picture is achieved that describes the TPT:
a transition from a CS superconductor to a topological CS
exciton insulator.

It should be noted that our method constitutes a gen-
eral approach to predict possible phases and analyze TPTs.
Indeed, the fermion orders proposed here can be general-
ized to describe other exotic phases, such as helical Dirac
spin liquid [44], U(1) Dirac [84], and Z2 spin liquid. As
a result, we expect the proposed CS mean-field theory to
describe different types of TPTs. Moreover, our method has
some advantages over previous methods. First, it does not
require notions such as the higher-form symmetries [85–87];
the current framework uses conventional notions of symmetry
breaking. Second, it could uncover some hidden features of
TOs and build connections between the TOs and some famil-
iar fermionic states.

Another research direction that arises from the present
work is the possible classification of spin liquids based on
dualities and general Chern-Simons flux attachment. Spin-
liquid states have been classified in many systems, mainly
when the SU(2) spin-rotation symmetry is conserved. Clas-
sifications of spin liquids have been performed for various
lattices using Schwinger-boson and Abrikosov-fermion repre-
sentations. Previous works also used the projective symmetry
group method to classify Z2 [26] and chiral spin liquids [88].
However, exhaustive classification of possible quantum spin
liquids on a given lattice model with topological field theories
and physical properties is still lacking.

Here one can develop a classification scheme of spin
liquids based on all possible Chern-Simons flux attachment
representations of spin operators. Using these representations,
we will not only resort to flux smearing approximation, as
usually done for chiral spin liquids, but we will look for the
realization of combinations of mutual Chern-Simons terms
upon performing different flux attachments on different sub-
lattices. One can also look for a breakdown of Chern-Simons
superconductivity yielding a variety of possible Dirac spin
liquids and states supporting couplings to a larger number of
gauge degrees of freedom. This task will inform about the
nature of possible excitations, the nature of emergent gauge
fields, and all the symmetries of the state. The result can
also be compared with (and, when applicable, recover) the
projective group classification of the spin liquids.

Because this method does not require the SU(2) symmetry
of the Hamiltonian, it can generate a variety of gapless spin
liquids that are beyond the reach of methods requiring the
SU(2) symmetry. Such an example is shown in Ref. [44],
where a novel helical spin liquid with N = 6 anisotropic Dirac
cones and with nonzero vector chirality yielding a broken
Z2 symmetry was proposed. Moreover, a continuous quantum
phase transition to a 120◦-ordered state was studied. Another
advantage of this classification scheme is that there are no
constraint issues in the Chern-Simons classification scheme
as opposed to the Schwinger scheme, where one needs to
introduce a constraint to remove extra degrees of freedom.
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