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Predicting hot-electron free energies from ground-state data
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Machine-learning potentials are usually trained on the ground-state, Born-Oppenheimer energy surface, which
depends exclusively on the atomic positions and not on the simulation temperature. This disregards the effect of
thermally excited electrons, that is important in metals, and essential to the description of warm dense matter.
An accurate physical description of these effects requires that the nuclei move on a temperature-dependent
electronic free energy. We propose a method to obtain machine-learning predictions of this free energy at an
arbitrary electron temperature using exclusively training data from ground-state calculations, avoiding the need
to train temperature-dependent potentials, and benchmark it on metallic liquid hydrogen at the conditions of
the core of gas giants and brown dwarfs. This Letter demonstrates the advantages of hybrid schemes that use
physical consideration to combine machine-learning predictions, providing a blueprint for the development of
similar approaches that extend the reach of atomistic modeling by removing the barrier between physics and
data-driven methodologies.
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In the past decade, machine-learning (ML) algorithms
proved to be an efficient alternative to expensive first-
principles (FP) calculations. The construction of ML inter-
atomic potentials (MLIPs) trained on FP data has achieved a
successful balance between computational cost and accuracy
[1–4]. This greatly simplified sampling the finite-temperature
properties of materials, and has been complemented by ML
models that predict functional materials properties ranging
from scalar quantities [5–8] to tensorial properties and fields
[9–12]. Current ML strategies are usually designed to re-
produce the ground-state, Born-Oppenheimer (BO) potential
energy surface, and do not account for the temperature-
dependent electronic excitations which may play a major role
in metallic matter at planetary conditions, such as warm dense
matter (WDM) [13–17], and that introduce subtle but impor-
tant corrections in the thermophysical properties of ordinary
metals [18,19]. The most common strategy to treat finite
electron temperature is to replace the BO potential with a
temperature-dependent electronic free energy A(T el ).

In traditional MLIP frameworks, that rely exclusively on
nuclear coordinates as inputs, switching from the BO poten-
tial to A(T el ) would require training a separate model for
every target electronic temperature T el, recomputing also the
training set—although the temperature can be included as
an input of the model, which yields MLIPs that are explic-
itly temperature dependent, and interpolate between training
data at different electron temperature [20]. One recent at-
tempt to incorporate directly electronic excitations into ML
simulations is to predict the single-particle density of states
[21], and use it to evaluate a posteriori corrections to the
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thermodynamic quantities, e.g., heat capacity or melting tem-
perature, extracted from the molecular dynamics (MD) of
ions whose MLIP is trained on ground-state data [22]. This
approach is limited to condensed matter well below the Fermi
temperature, where atomic forces are almost unaffected by
the electronic excitations. Another recent method relies on
Hamiltonian models based on the local density of states, and
trained on finite-temperature data [23]. Despite its success
in describing directly electron finite-temperature effects, this
approach would still require generating data at specific target
temperatures, limiting its transferability to conditions which
span broad temperature ranges.

In this Letter we first show that, within a density functional
theory (DFT) framework, the total free energy, atomic forces,
and the stress tensor of the system can be rigorously approxi-
mated as the sum of a T el = 0 K contribution and a finite-T el

correction depending exclusively on the ground-state elec-
tronic density of states (DOS). This general result underpins
a framework that relies only on ground-state calculations to
learn A(T el ) and its derivatives in the presence of thermally
excited electrons. Thus, a consistent ground-state training set
and model can be generated, and used to sample the finite-
electron-temperature distributions, using T el as an external
parameter. We test our method on simple metals, where the
atomic forces are evaluated at increasing electronic temper-
atures. We then validate our framework by constructing the
equation of state (EOS) of hydrogen at conditions relevant in
gas giants and brown dwarfs, for temperatures up to 50 000 K
and pressures up to 1600 GPa, by means of MD simulations
driven by our T el-dependent MLIPs. We also compute the
heat capacity of hydrogen at 400 GPa in the high-temperature
regime.

Let us start by considering the standard representation of
the DFT energy,

E = Eb − Edc + Eion, (1)
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FIG. 1. Upper panel: Relative deviation of Hellmann-Feynman
atomic force vs the electronic temperature with respect to the ground-
state force for a given ion and a Cartesian direction. The sketch
represents the decomposition of the finite-T el atomic force compo-
nent within our framework. Lower panel: Root-mean-square errors
(RMSEs) of ten force components computed with Eq. (10) compared
to their Hellmann-Feynman counterparts. Solid lines: Using the DOS
from T el = 0 K calculations. Dashed lines: Using the DOS from
finite-T el calculations. Blue: aluminum; orange: hydrogen; green:
nickel.

as a sum of the electrostatic interactions between the ions
Eion, the band energy Eb = ∑

i fiεi, expressed in terms of the
Kohn-Sham (KS) eigenvalues εi and level occupations fi, and
the “double-counting term”

Edc = 1

2

∫∫
ρ(r′)ρ(r)

|r − r′| drdr′ − Exc[ρ]+
∫

Vxc[ρ](r)ρ(r)dr.

(2)
Here, Exc is the is the exchange-correlation (XC) functional,
Vxc[ρ](r) = δExc/δρ(r) is the XC potential, and ρ(r) =∑

i fi|φi(r)|2 is the DFT density, expressed in terms of the KS
eigenfunctions φi(r) and occupations fi.

Whenever an electronic temperature T el is introduced, fi

become fractional, and the correct energy functional becomes
the Helmholtz free energy [24–26],

A(T el ) = E (0) + �E (T el ) − T elS(T el ), (3)

where �E (T el ) is the finite-T el contribution to the energy, and
S(T el ) is the KS electronic entropy. From Eq. (3) one can
obtain the finite-T el Hellmann-Feynman forces [27], whose
relative deviation with respect to T el = 0 K forces becomes
significant at large T el, as reported in the upper panel of
Fig. 1. In principle, a T el-dependent XC functional should
be employed [28]. However, it is often possible to rely on
the zero-temperature approximation (ZTA), where the XC

functional depends on T el only through the T el dependence of
the density: Exc[ρ(T el )]. The ZTA performs well at both low
and high T el and also satisfies exact conditions as discussed
in Ref. [29], and we adopt it as the basis of our framework.

A change in the occupation of the levels, e.g., as a con-
sequence of thermal excitations, determines a change in the
density, and thus, self-consistently, in the KS eigenenergies
and eigenfunctions. For instance, the functional derivative of
Eb with respect to fi is

δEb

δ fi
= εi +

∑
j

f j
δε j

δ fi
. (4)

Nonetheless, it can be proved, following a reasoning similar to
that used in Ref. [30], and in Ref. [31] for the energy variation
due to infinitesimal atomic displacements (cf. Supplemental
Material [32]), that the second term in Eq. (4) cancels ex-
actly with the variation of the double-counting term δEdc/δ fi.
Therefore, the change in E due to a finite change in the
occupations can be approximated by

�E ≈ �E0
b ≡

∑
i

ε0
i � fi, (5)

where ε0
i ≡ εi({� fk = 0}) are the eigenenergies computed at

vanishing variation on all the fk . The “0” superscript labels
quantities obtained from unperturbed eigenenergies, com-
puted at T el = 0 K.

We now focus on the specific case where the set of fi are
Fermi-Dirac distributed, fi = f ( εi−μ(T el )

kBT el ), f (x) = 1/(1 + ex )
being the Fermi function, μ(T el ) being the chemical potential
of the electron system, and kB the Boltzmann constant. From
Eq. (5), the finite-T el correction to the DFT energy is

�E0
b (T el )=

∫ +∞

−∞
εg0(ε)

[
f

(
ε−μ(T el )

kBT el

)
− f

(
ε−μ(0)

kB0+

)]
dε,

(6)

where g0(ε) = ∑
i δ(ε − ε0

i ) is the electronic DOS. μ(T el ) is
computed by enforcing charge-conservation:

N =
∫ +∞

−∞
g0(ε) f

(
ε − μ(T el )

kBT el

)
dε, (7)

where N is the number of electrons. In the Supplemental
Material [32], we justify the use of g0(ε) in Eq. (7) and when
evaluating the electronic entropy S(T el ),

S(T el ) ≈ S0(T el ) ≡
∫ +∞

−∞
g0(ε) s

(
ε − μ(T el )

kBT el

)
dε, (8)

where s(x) = f ln f + (1 − f ) ln(1 − f ). Therefore, our ap-
proximation for the free energy reads

A(T el ) ≈ E (0) + �E0
b (T el ) − T elS0(T el ). (9)

The number of states above μ(T el ) that must be included
to reliably compute the finite-temperature contribution to the
free energy depends on the temperature. This means that
for training configurations we have to include a larger num-
ber of empty states than that usually needed for T el = 0 K
calculations. The finite-T el correction terms in Eq. (9) are
independent of the alignment of the DOS (cf. Supplemen-
tal Material [32]), as long as it is chosen consistently when
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computing the chemical potential, the band energy, and the
entropy terms. Our derivation justifies other approximations
made in the literature such as the fixed-DOS approximation of
Ref. [33], which assumes that the electronic DOS is approx-
imately independent of T el. In fact, the cancellations ensure
the validity of Eq. (5), even if the self-consistent energy levels
(and thus the DOS itself) changed substantially by changing
T el. If one wanted to go beyond this ground-state approx-
imation, it would not be sufficient to obtain the finite-T el

DOS, and to use it in expressions similar to Eqs. (6)–(8).
Without access to the self-consistent finite temperature Edc,
doing so would lead to worse results, as shown in the lower
panel in Fig. 1. If one was prepared to perform self-consistent
calculations at multiple temperatures, our perturbative ex-
pressions could also be applied to a reference temperature
different from T el = 0, and serve as the basis of more ac-
curate temperature-interpolation schemes (cf. Supplemental
Material [32]). Our derivation directly translates to the cal-
culation of derivatives of the free energy, such as forces and
stresses. For instance, according to the Born-Oppenheimer
approximation, the force acting on the Ith nucleus in the the
DFT ensemble is FI (T el ) = −∇I A(T el ) ≈ FI (0) + �F0

I (T el ),
where

FI (0) ≡ − ∇I E (0),

�F0
I (T el ) ≡ − ∇I

[
�E0

b (T el ) − T elS0(T el )
]
. (10)

In this decomposition, the electronic temperature T el enters as
an external parameter.

These equations would be of limited practical value if the
end goal was to compute A(T el ) for a given structure and
temperature by means of a self-consistent electronic structure
calculation. However, they become very useful in the context
of data-driven modeling, as they provide a rigorous basis
for the development of an ML framework to learn finite-T el

interatomic force fields without the need to train on finite-T el

calculations. The T el = 0 K quantities, E (0) and FI (0), can be
modeled by any of the widely used MLIPs [2,4,34–36]. The
hot-electron correction, Eq. (10), can be accessed by training
an ML model for the DOS. In this Letter we use the Gaussian
approximation potentials (GAPs) [34] and an atom-centered
model for the DOS as detailed in Ref. [21]. Both models rely
on a linear expansion of a target quantity y (be it the energy
or the DOS) of a given structure A on a set of positive-definite
functions, also called kernels, k(A, Mj ), measuring the simi-
larity between the structure A and a structure Mj belonging to
the set of M reference environments, also called the active set:

y(A) =
∑
j∈M

w j k(A, Mj ). (11)

Notice that, for the DOS, y = g0(ε, A), the weights w j (ε) are
a function of a discretized energy grid. The weights do not
depend on the atomic positions of A. Therefore, gradients
needed to compute atomic forces, as in Eq. (10), do not act
on the weights, but on kernels alone. In practice, since nei-
ther the kernels nor their gradients depend on ε, they can be
collected out of integrals involving the DOS such as Eq. (6),
which makes the implementation of this approach particularly
simple in the case of kernel (or linear) models (cf. Sup-
plemental Material [32]). We construct the kernels k(A, Mj )

TABLE I. Table of the validation root-mean-square error
(RMSE) of the ML models on the energies and forces compared to
the reference DFT data, at the same level of theory introduced in
Eqs. (9) and (10). The electronic temperature is T el = 35 000 K. The
training set consists of 28 000 structures and the errors are reported
for a validation set of 2500 configurations.

RMSE

E (0) 11.05 meV/atom
�E 0

b (T el ) − T elS0(T el ) 13.43 meV/atom
A(T el ) 12.22 meV/atom
FI (0) 0.87 eV/Å
�F0

I (T el ) 0.66 eV/Å
FI (T el ) 0.81 eV/Å

from the smooth overlap of atomic positions (SOAP) repre-
sentation [37,38] with radial scaling [39] as implemented in
LIBRASCAL [40], and we use its interface with I-PI [41] to run
MD simulations with finite electron temperature.

We demonstrate the practicality of our theoretical frame-
work in ML workflows incorporating the electronic finite-
temperature effects in atomistic simulations by constructing
the EOS of metallic liquid hydrogen at conditions similar
to those found in the core of a young Jupiter [42], and we
compare our ML approach to explicit first-principles molec-
ular dynamics (FPMD) simulations results at finite-T el. We
build a training set made of ∼28 000 structures, each con-
taining 128 atoms, and densities ranging between 0.6 and
1.77 g cm−3. It consists of configurations from Ref. [43],
complemented by snapshots obtained from MD simulations
performed with preliminary versions of the MLIP. We employ
QUANTUM ESPRESSO [44–46] (QE) for DFT calculations of
the data set, using the optimized norm-conserving Vanderbilt
pseudopotential [47] version 1.2, which is shown to perform
well even at ∼TPa pressures [48]. Dispersion interactions
are included via a van der Waals density functional [49–52].
Details of the reference calculations and of the GAP model
construction are given in the Supplemental Material [32].
Table I shows the root-mean-square error (RMSE) of the
different (free) energies and forces for T el = 0 K and at T el =
35 000 K. The ML models are in good agreement with the
corresponding DFT calculations and the RMSE of the total
free energy is well below the typical thermal energy at the
temperatures we consider in this study, and comparable to the
values observed in previous simulations of liquid systems at
high ionic temperatures [53].

In order to gauge the importance of finite-T el effects, and
to obtain accurate reference calculations consistent with our
computational setup, we run two sets of FPMD trajectories
targeting the pressures 400, 800, 1200, and 1600 GPa for
each of the ionic temperatures T i = 10 000, 20 000, 35 000,
and 50 000 K. The electronic temperature of the first set
is T el = 0 K, while T el = T i in the second set. The DFT
calculations are performed with QE and �-point sampling. We
evolve the ion dynamics with I-PI for at least 8 ps, after an
equilibration of 1 ps, with a time step of 0.1 fs. T i is controlled
by stochastic velocity rescaling [54] with a time constant
τ = 5 fs, and an isotropic barostat [55] with a time constant
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FIG. 2. Hydrogen isotherms of different equations of state
(EOS). The open circles correspond to the EOS computed with
“cold”-electron-�-point DFT. The open diamonds correspond to the
EOS computed with finite-electron-temperature-�-point DFT. The
dashed lines correspond to the EOS computed with ML trained on
T el = 0 K data. The solid lines correspond to the EOS computed
with finite-temperature ML framework, where T el = T i. The temper-
atures range from 10 000 to 50 000 K denoted by the different colors
as shown in the legend. The statistical error bars computed by block
averages are smaller than the size of the markers. The small inset rep-
resents the radial distribution functions of hydrogen at P = 400 GPa
and T i = 50 000 K computed from the ML trajectories. The dashed
line corresponds to T el = 0 K and the solid line to T el = T i.

τ = 20 fs, thermalized with an optimal-sampling generalized
Langevin thermostat [56]. Due to the high temperature and
the fast intrinsic timescale of hydrogen, such relatively short
simulations are sufficient to obtain converged results with a
small statistical uncertainty. We report the results of these
simulations in Fig. 2, by the open symbols. The differences
due to the finite electron temperature grow steadily between
10 000 and 50 000 K, and at the highest temperature they
range between 4% at 1600 GPa and 10% at 400 GPa, pro-
viding an indication of the impact of finite T el in this range of
pressure and density.

We then run two analogous sets of trajectories based on the
finite-T el MLIP, temperatures as for the FPMD, and pressures
spanning the range between 400 and 1600 GPa in intervals of
100 GPa. As for the case of FPMD, the first set of simulations
does not include any finite-temperature effects (dashed lines in
Fig. 2), while the second incorporates them (solid lines). Our
ML EOS are in excellent agreement with the reference curves
obtained with explicit finite-T el FPMD, up to the statistical
uncertainties. We also observe a small shift in the radial dis-
tribution at the lower-pressure and higher-temperature range,
corresponding to the difference in particle densities. As an
additional demonstration of the importance of incorporating
finite-T el effects, we compute constant-pressure heat capac-

FIG. 3. Specific heat capacity Cp of hydrogen from NpT simula-
tions at 400 GPa. The solid lines represent the DFT calculations and
the dashed lines represent the ML calculations. Blue: Cp from the
fluctuations of the ions’ enthalpy at T el = 0 K; orange: Cp same as
the blue curves in addition to a correction term computed from the
average band energy of the electrons over the trajectories; green: Cp

from the the finite-T el sampling. The error bars are computed from
standard block analysis.

ities, Cp = (
∂H
∂T

)
p

that we obtain as finite differences of the

enthalpy H = 〈K〉 + 〈A(T el )〉 + T el〈S0(T el )〉 + p〈V 〉, as de-
scribed in the Supplemental Material [32]. Here, K is the
kinetic energy of the ions, and the averages 〈· · · 〉 are com-
puted over finite-T el NpT sampling. Figure 3 compares the
heat capacity computed from T el = 0 K simulations (blue)
with that computed including the electronic contributions
(green)—which amounts to almost 50% at the highest tem-
perature considered. DFT and ML simulations agree with
each other within their statistical uncertainty. The a posteriori
incorporation of electronic excitation by adding Cel ≡ 〈

∂�Eb
∂T

〉
(orange) on top of the T el = 0 K ionic contribution, as done
in Ref. [22], cannot reproduce accurately the finite-T el results.

These results demonstrate the accuracy of an ML model
based on the ground-state DOS approximation in sampling
the finite-T el thermophysical properties of hydrogen in a chal-
lenging portion of its phase diagram. By treating explicitly
the ionic and electronic degrees of freedom, our ML models
eliminate one of the most glaring limitations of traditional
MLIPs, that are restricted to perform simulations at a single
(usually zero) electron temperature. We remark that no restric-
tion occurs in applying our machinery to a two-temperature
model where T el 
= T i and the hot electrons are not in thermal
equilibrium with the nuclei, even though electron-nuclei in-
teractions should be included to allow for thermalization. Our
approach can be easily extended to any electronic structure
method based on the KS mapping, and can be naturally used
also for multiple-species systems, opening the possibility of
studying the complex phase diagram of metallic mixtures
at high-pT conditions, which dictates the evolution of giant
planets [57]. On a conceptual level, the idea of using a phys-
ical approximation in synergy with data-driven predictions
indicates a promising research direction to further extend the
scope of applicability of predictive atomic-scale simulations.
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The data supporting the findings in this work are available
on the Materials Cloud platform [58]. Archived versions of
software used to run the DFT and ML simulations are avail-
able on Zenodo [59].
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