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Diffusive density response of electrons in anisotropic multiband systems
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We explicitly calculate the density-density response function with conserving vertex corrections for
anisotropic multiband systems in the presence of impurities including long-range disorder. The direction
dependence of the vertex corrections is correctly considered to obtain the diffusion constant which is given
by a combination of componentwise transport relaxation times and velocities on the Fermi surface. We also
investigate the diffusive density response of various anisotropic systems, propose some empirical rules for the
corresponding diffusion constant, and demonstrate that it is crucial to consider the component dependence of the
transport relaxation times to correctly interpret the transport properties of anisotropic systems, especially various
topological materials with a different power-law dispersion in each direction.
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Introduction. Recently, many anisotropic or multiband sys-
tems, such as black phosphorus with a tunable band gap [1–9],
nodal line semimetals [10–17], and multi-Weyl semimet-
als [18–26], have attracted much attention owing to their
unique properties arising from their nodal structure with
anisotropic nonlinear dispersion and the associated chiral na-
ture of the wave functions. It is essential to understand how
the anisotropy and multiband nature are manifested in the
physical properties of these systems.

The fundamental transport properties in the presence of
impurities can be understood from the diffusive dynam-
ics of current and density fluctuations in response to the
external fields. The former corresponds to the current re-
sponse characterized by the dc conductivity, whose form in
anisotropic multiband systems has been obtained through the
semiclassical Boltzmann transport theory [27–30] or many-
body diagrammatic theory [30]. On the other hand, the latter
corresponds to the density response characterized by the dif-
fusion constant. In isotropic single-band systems, the density
response takes the form

χ (q, ν) ∼ 1

iν − Dq2
, (1)

which can be classically derived from the continuity equa-
tion ∂ρ

∂t + ∇ · J = 0 and Fick’s law J = −D∇ρ, where ρ, J,
and D are the number density, number current density, and
diffusion constant, respectively. However, the diffusive den-
sity response of electrons in anisotropic multiband systems
has not been exactly investigated in spite of its importance
in understanding the corresponding diffusive transport. Thus,
it is crucial to describe the density response correctly for
anisotropic multiband systems in the presence of impurities.

In this Letter, using the diagrammatic approach we develop
a theory to correctly evaluate the vertex corrections to the
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density-density response function and corresponding diffu-
sion constant in anisotropic multiband systems in the presence
of disorders, including long-range disorder, within the low
impurity density limit. We incorporate the direction depen-
dence of vertex corrections originating from the chirality and
long-range disorder of the systems, and find that the diffu-
sion constant is generally given by a nontrivial combination
of componentwise transport relaxation times τ (i) and veloc-
ities v(i) (i = x, y, . . .) on the Fermi surface, which satisfies
the Einstein relation ensuring consistency with the continuity
equation.

We use our results to calculate the diffusion constants of
anisotropic two-dimensional electron gas (2DEG), anisotropic
graphene, and few-layer black phosphorus (fBP) at the semi-
Dirac transition point in the presence of long-range disorder
for charged impurities. We demonstrate that the anisotropy of
the diffusion constant (and also in the corresponding conduc-
tivity) strongly depends on the screening strength and deviates
from the commonly expected anisotropy of the Fermi-velocity
square, especially in highly anisotropic systems with a dif-
ferent power-law dispersion in each direction. Based on
these observations, we propose some empirical rules for the
anisotropy of the diffusion constant in anisotropic systems.
We note that the anisotropy of the diffusion constant shows
a significant difference from the one obtained neglecting
the component dependence of the transport relaxation time,
indicating that the component dependence of the transport
relaxation time needs to be considered to correctly interpret
the transport properties of anisotropic systems.

Vertex corrections to the density-density response function.
Within the ladder vertex corrections (Fig. 1), we establish the
density-density response function of a disordered electron gas
with the charge vertex �0α for band α as follows,

χ (q, iνm) = g

β

∑
α,iωn

∫
dd k

(2π )d
�0α (k, iωn; q, iνm)

× Gα (k, iωn)Gα (k + q, iωn + iνm), (2)
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FIG. 1. Feynman diagrams for (a) the disorder-averaged Green’s
function within the Born approximation, (b) the density-density re-
sponse function without vertex corrections, (c) the density-density
response function with vertex corrections, and (d) the ladder approx-
imation for the charge vertex.

where g is the spin/valley degeneracy factor, β = 1/kBT , and
ωn and νm are fermionic and bosonic Matsubara frequen-
cies, respectively. Here, Gα (k, iωn) is the disorder-averaged
Green’s function given by

Gα (k, iωn) = [iωn − ξα,k − 
α (k, iωn)]−1, (3)

where ξα,k is the energy measured from the Fermi energy at
state (α, k) and 
α (k, iωn) is the electron self-energy due to
impurity scattering. Here, we assume a low temperature to
ensure that the chemical potential can be approximated to the
Fermi energy, and set h̄ = 1 for convenience.

Separating the charge vertex correction into two parts as
�0α = 1 + (�0α − 1), the density-density response function
can be stated as χ = χ0 + χ1. Here, χ0 is the density-density
response function without vertex corrections, whose leading
order term for impurities in the static long-wavelength limit
is given by χ0 ≈ −N (0) [see Sec. I of Supplemental Material
[31]], where N (ξ ) is the density of states at energy ξ measured
from the Fermi energy. Then, the contribution of the vertex
corrections is given by

χ1(q, iνm) = g

β

∑
α,iωn

∫
dd k

(2π )d
[�0α (k, iωn; q, iνm) − 1]

× Gα (k, iωn)Gα (k + q, iωn + iνm). (4)

We begin with considering the Dyson equation for the
charge vertex �0α within the ladder approximation [Fig. 1(d)]
neglecting the quantum interference corrections,

�0α (k, iωn; q, iνm)

= 1 + nimp

∑
α′

∫
dd k′

(2π )d
|Vα,k;α′,k′ |2�0α′ (k′, iωn; q, iνm)

× Gα′ (k′, iωn)Gα′ (k′ + q, iωn + iνm), (5)

where nimp is the impurity density and Vα,k;α′,k′ is the matrix
element of the impurity potential between states (α, k) and
(α′, k′). In the long-wavelength limit where q → 0 and in
the low frequency–low impurity density limit where ωn and

α (k, iωn) are negligible, Eq. (5) transforms into

�0α (k, iωn; q, iνm) − 1

≈ �n,m

∑
α′

∫
dd k′

(2π )d
Wα,k;α′,k′

�0α′ (k′, iωn; q, iνm)

νm + iq · vα′,k′ + 1/τ
qp
α′,k′

,

(6)

where �n,m = 1 for −νm < ωn < 0 and 0 otherwise,
Wα,k;α′,k′ ≡ 2πnimp|Vα,k;α′,k′ |2δ(ξα,k − ξα′,k′ ) is the transition
rate from state (α, k) to (α′, k′), vα,k is the velocity at (α, k),
and τ

qp
α,k is the quasiparticle lifetime for (α, k) which is given

up to the first-order Born approximation [32] as

1

τ
qp
α,k

=
∑
α′

∫
dd k′

(2π )d
Wα,k;α′,k′ . (7)

For detailed derivations, see Sec. II of Supplemental Material
[31].

Similarly as in isotropic single-band systems [33], the
charge vertex with q = 0 for (α, k) on the Fermi surface is
given by (see Sec. III of Supplemental Material [31])

�0α (k, iωn; 0, iνm) = 1 + �n,m

νmτ
qp
α,k

. (8)

Motivated from Eq. (8), we set an ansatz for the charge vertex
as follows,

�0α (k, iωn; q, iνm) = 1 + �n,m
1 − iq · lα,k

Vm(q, νm)τ qp
α,k

, (9)

for some lα,k and Vm(q, νm) satisfying Vm(0, νm) = νm. The
direction dependence of the charge vertex from the coupling
between q and k, which has been conventionally neglected
to obtain a solution of the Dyson equation in a closed form
[33,34], is considered up to linear order in q via the q · lα,k

term.
Inserting Eq. (9) into Eq. (6) and expanding the right-hand

side in powers of q and νm, from the linear terms we obtain

l (i)
α,k = v

(i)
α,k

(
τ

(i)
α,k − τ

qp
α,k

)
, (10)

where v
(i)
α,k and τ

(i)
α,k are the ith components of the velocity

and transport relaxation time satisfying the following integral
equation given by [27–30]

1 =
∑
α′

∫
dd k′

(2π )d
Wα,k;α′,k′

(
τ

(i)
α,k −

v
(i)
α′,k′

v
(i)
α,k

τ
(i)
α′,k′

)
. (11)

As seen in Eq. (10), the q · lα,k term added to the conventional
derivations vanishes only if the quasiparticle lifetime and
transport relaxation time coincide, which occurs for nonchiral
systems with short-range disorder. Thus, we infer that the
q · lα,k term originates from the chirality and long-range dis-
order of the systems. On the other hand, from the quadratic
terms averaged over the Fermi surface we obtain

Vm(q, νm) = νm +
∑
i, j

qiq jDi j + O3(q, νm). (12)
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Here, On(q, νm) represents the subleading terms of nth order
or higher in q and νm, and Di j is the diffusion constant defined
by

Di j = 1

Ñ (0)

∑
α

∫
dd k

(2π )d
δ(ξα,k)v(i)

α,kv
( j)
α,kτ

( j)
α,k, (13)

where Ñ (ξ ) ≡ N (ξ )/g is the density of states per degeneracy
at energy ξ . See Sec. IV of Supplemental Material [31] for
the detailed derivations of Eqs. (10) and (12). Note that the
diffusion constant in Eq. (13) is symmetric with respect to the
indices i and j. Using Eq. (11), Eq. (13) can be rewritten as

Di j = 1

Ñ (0)

∑
α

∫
dd k

(2π )d
δ(ξα,k)v(i)

α,kv
( j)
α,kτ

(i)
α,kτ

( j)
α,k

(
τ

qp
α,k

)−1

− 1

Ñ (0)

∑
α,α′

∫
dd k

(2π )d

∫
dd k′

(2π )d
Wα,k;α′,k′

× δ(ξα,k)v(i)
α,kv

( j)
α′,k′τ

(i)
α,kτ

( j)
α′,k′ , (14)

which clearly reflects the symmetry with respect to the indices
i and j.

Repeating the process in Sec. II of Supplemental Material
[31], Eq. (4) can be rewritten as

χ1(q, iνm) = 2πg

β

∑
α,iωn

�n,m

∫
dd k

(2π )d
δ(ξα,k)

× τ
qp
α,k[�0α (k, iωn; q, iνm) − 1]

1 + νmτ
qp
α,k + iq · vα,kτ

qp
α,k

. (15)

Inserting Eq. (9) into Eq. (15) and expanding the right-hand
side, we finally obtain

χ1(q, iνm) = N (0)
νm[1 + O1(q, νm)]

νm + ∑
i, j qiq jDi j + O3(q, νm)

. (16)

Here, we have used 2π
β

∑
iωn

�n,m = νm. Therefore, up to lead-
ing order in q and νm, χ (q, iνm) = χ0(q, iνm) + χ1(q, iνm) is
given by

χ (q, iνm) ≈ −N (0)

∑
i, j qiq jDi j

νm + ∑
i, j qiq jDi j

. (17)

Through the analytic continuation iνm → ν + i0+, the re-
tarded density-density response function is given by

χ (R)(q, ν) = N (0)

∑
i, j qiq jDi j

iν − ∑
i, j qiq jDi j

. (18)

For alternative derivations performing the frequency summa-
tion first, see Sec. V of Supplemental Material [31].

Evaluation of the diffusion constants in anisotropic systems.
We evaluate the diffusion constants in anisotropic 2DEG,
anisotropic graphene, and fBP at the semi-Dirac transition
point for both short-range disorder and long-range disor-
der. For the anisotropy factor A = k(x)

F /k(y)
F characterizing the

anisotropy of the Fermi surface where k(i)
F is the Fermi wave

vector along the ith direction, we use A = 2, 5 estimated from
fBP at the semi-Dirac transition point with a typical doping
concentration n = 1012–1013 cm−2, whereas for anisotropic

FIG. 2. Anisotropy Dyy/Dxx of the diffusion constant normal-
ized by (v(y)

F /v
(x)
F )2 as a function of the screening factor Q for (a),

(d) anisotropic 2DEG, (b), (e) anisotropic graphene, and (c), (f) fBP
at the semi-Dirac transition point, obtained from (a)–(c) Eq. (13)
considering the component dependence of the transport relaxation
time and from (d)–(f) Eq. (19) neglecting the component depen-
dence of the transport relaxation time as in isotropic systems. Here,
Q ≡ qTF/kF and A ≡ k(x)

F /k(y)
F . The values for the short-range disor-

der are represented by the dashed lines with the corresponding colors
or by the black dashed lines if they coincide.

2DEG and anisotropic graphene, we use the same A for com-
parison. See Sec. VI of Supplemental Material [31] for details.

In anisotropic 2DEG and anisotropic graphene, Dyy/Dxx

is equal to the commonly expected (v(y)
F /v

(x)
F )2 for short-

range disorder, where v
(i)
F is the Fermi velocity along

the ith direction, whereas for long-range disorder it devi-
ates from (v(y)

F /v
(x)
F )2 and depends on the screening factor

Q ≡ qTF/kF characterizing the screening strength, where qTF

is the Thomas-Fermi wave vector and kF is the effective
Fermi wave vector. In the strong screening limit, the re-
sult eventually approaches that of the short-range disorder
[Figs. 2(a) and 2(b)]. In fBP at the semi-Dirac transition point
where the energy dispersion is quadratic/linear along the
zigzag (x)/armchair (y) direction with different power laws
depending on the direction, Dyy/Dxx becomes 7.6(v(y)

F /v
(x)
F )2

differing from (v(y)
F /v

(x)
F )2 even for short-range disorder. For

long-range disorder, it increases with the screening strength,
approaching the short-range result in the strong screening
limit [Fig. 2(c)]. Note that the dependence on the screening
strength becomes larger as the anisotropy of the system in-
creases for all cases [Figs. 2(a)–2(c)]. For detailed derivations
and numerical calculations, see Sec. VI of Supplemental Ma-
terial [31].

When the system has the same power-law dispersion
in each direction as in anisotropic 2DEG and anisotropic
graphene, for short-range disorder τ

(i)
k becomes the same for

L121113-3



SUH, KIM, HWANG, AND MIN PHYSICAL REVIEW B 106, L121113 (2022)

each component i and independent of the direction of k that
Dyy/Dxx = (v(y)

F /v
(x)
F )2. For long-range disorder, τ

(i)
k has a

dependence not only on the direction of k but also on i that
the deviation of Dyy/Dxx from (v(y)

F /v
(x)
F )2 increases as the

screening becomes weaker. When the system has a different
power-law dispersion in each direction as in fBP at the semi-
Dirac transition point, τ

(i)
k has a dependence not only on the

direction of k but also on the component i even for short-range
disorder, yielding a significant deviation of Dyy/Dxx from
(v(y)

F /v
(x)
F )2. In both cases, the deviation in anisotropy aris-

ing from τ
(i)
k shows a stronger dependence on the screening

compared to that obtained from

1

τ tr
k

=
∫

dd k′

(2π )d
Wk;k′ (1 − k̂ · k̂

′
), (19)

neglecting the dependence on the component i as in isotropic
systems [Figs. 2(d)–2(f)]. From these observations, we find
that the componentwise transport relaxation time should be
considered to correctly interpret the transport properties of
anisotropic systems, especially when dealing with highly
anisotropic systems with a different power-law dispersion in
each direction, even in the strong screening limit.

Furthermore, from the Einstein relation in anisotropic
multiband systems [27–30], the dc conductivity is given by

σi j (q → 0) = e2N (0)Di j, (20)

thus we have σyy/σxx = Dyy/Dxx. Consequently, the
anisotropy of the conductivity also shows a significant
difference from that estimated neglecting the component
dependence of transport relaxation time for long-range
disorder, and even for short-range disorder when the system
has a different power-law dispersion in each direction.

Discussion. In d-dimensional isotropic single-band sys-
tems, the diffusion constant in Eq. (13) reduces to

D = v2
Fτ

tr

d
, (21)

which has the same form appearing in the Einstein rela-
tion. However, the conventional many-body diagrammatic
approach considering the vertex corrections to the density-
density response function gives the diffusion constant to be
[33,34]

D = v2
Fτ

qp

d
, (22)

where τ qp is the quasiparticle lifetime. The difference between
the conventional approach and our results originates from the
additional q · lk term in Eq. (9), which is the only direction
dependence on q for isotropic systems. As mentioned, the
conventional approach in isotropic single-band systems ne-
glects the direction dependence of the charge vertex to obtain
a solution of the Dyson equation in a closed form. However,

the Dyson equation in Eq. (5) actually depends on the di-
rection of q through the k dependence in Wα,k;α′,k′ when the
system has chirality or long-range disorder. We correctly con-
sidered this direction dependence in the Dyson equation and
obtain the corresponding solutions up to linear order in q,
and to quadratic order in q averaged over the Fermi surface,
respectively.

Furthermore, the diffusion constant given by Eq. (13)
correctly describes the diffusive dynamics. From the
continuity equation ∂ρ

∂t + ∇ · J = 0, the density-density
response function and conductivity are related as
iνe2χ (q, ν) + ∑

i, j σi jqiq j = 0. Thus, using χ (q → 0, ν) ≈
N (0)

∑
i, j qiq jDi j/iν from Eq. (18), we can reproduce the

Einstein relation in Eq. (20).
In disordered systems, the density-density response func-

tion has the diffusion pole presenting a pronounced peak at
low frequencies in the density fluctuation spectrum, which
affects the quasiparticle properties of a disordered electron
liquid [36]. In anisotropic multiband systems, the density-
density response function is given by Eq. (18) characterized
by the diffusion pole structure, thus the diffusion pole occurs
at ν = −i

∑
i, j qiq jDi j . Since the diffusion constant given by

Eq. (13) is anisotropic in general, the diffusion pole occur-
ring due to disorder may affect the quasiparticle properties
anisotropically. Thus, studying the anisotropy of the diffusion
constant correctly considering the component dependence of
the transport relaxation time is important to understand the
effect of disorder in anisotropic multiband systems.

In summary, using a many-body diagrammatic approach,
we develop a theory for the vertex corrections to the density-
density response function and find the corresponding diffusion
constant in anisotropic multiband systems. We fully in-
corporate the direction dependence of the charge vertex,
especially the one from the chirality and long-range dis-
order of the systems, and find that the diffusion constant
obtained in this many-body diagrammatic approach is associ-
ated with the componentwise transport relaxation time rather
than the quasiparticle lifetime. This nontrivial result correctly
describes the diffusive dynamics of anisotropic multiband sys-
tems, consistent with the continuity equation. Furthermore,
we calculate the diffusion constants of various anisotropic
systems in the presence of the long-range disorder for charged
impurities and find that the inclusion of the component-
dependent transport relaxation time is crucial to correctly
describe the transport properties of anisotropic systems.
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