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Dynamics of topological defects after photoinduced melting of a charge density wave
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Charge-density-wave order in a solid can be temporarily “melted” by a strong laser pulse. Here, we use the
discrete Gross-Pitaevskii equation on a cubic lattice to simulate the recovery of the CDW long-range phase
coherence following such a pulse. Our simulations indicate that the recovery process is dramatically slowed down
by the three-dimensional topological defects—CDW dislocations—created as a result of strongly nonequilibrium
heating and cooling of the system. Overall, the simulated CDW recovery was found to be remarkably reminiscent
of a recent pump-probe experiment in LaTe3.
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Topological defects in the form of vortices play a promi-
nent role in nonequilibrium and equilibrium statistical physics
of ordered systems [1–13]. In particular, vortices are known to
emerge through the Kibble-Zurek mechanism [14–17], when
the system is cooled across a phase transition. In the Kibble-
Zurek setting, the system is initially at equilibrium, and the
cooling process is supposed to be adiabatic everywhere except
for a close vicinity of the phase transition temperature. It is
still an outstanding question: What happens after a quench
across a phase transition, where the initial state is far from
equilibrium, and the energy flow from the system is so fast
that the system does not reach quasiequilibrium at any time
during the quench?

In the present Letter, we address the above question in the
context of the recent pump-probe experiment of Ref. [18] on
the light-induced melting of a charge density wave (CDW) in
LaTe3. The experiment monitored the recovery of the CDW
order after its destruction by a laser pulse. The experimen-
tal system was initially in a low-temperature ordered phase;
then the part of the system responsible for the CDW order
was rapidly heated up and cooled down, so that it did not
have time to reach the high-temperature equilibrium. It was
observed [18] that the amplitude and the phase of the CDW
responded qualitatively differently: The amplitude recovered
quickly, whereas for sufficiently high pump pulse intensity,
the recovery of phase coherence took much longer [19]. It was
conjectured in Ref. [18] on the basis of indirect experimen-
tal evidence that the observed slowdown of the CDW order
recovery is due to the slow dynamics of the photoinduced
topological defects—CDW dislocations. Topological defects
within the CDW phase were also invoked in other contexts in
Refs. [20–27].

The translational symmetry breaking associated with the
onset of a CDW can be equivalently viewed as the breaking
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of the U (1) symmetry with respect to the phase of the CDW
order parameter. In such a picture, the CDW dislocations are
mapped onto vortices in the underlying U (1)-ordered state
(see Fig. 1).

In the present Letter, we simulate the principal features
of the CDW phase dynamics with the help of the discrete
Gross-Pitaevskii equation (DGPE), which also exhibits a U (1)
phase transition. We implement the heating-cooling quench,
perform the numerical imaging of vortices, trace their dy-
namics, and thereby demonstrate that they are responsible
for the slowdown of the order parameter recovery. The ba-
sic character of our simulations suggest that the observed
nonequilibrium phenomenology is applicable to a broad class
of physical systems.

General considerations. CDW is a modulation of elec-
tronic charge density accompanied by a periodic modulation
of ionic positions

rm → rm + u e cos (qCDWrm + φ), (1)

where rm is the position of the mth ion, qCDW the CDW wave
vector, u and φ the amplitude and the phase of the CDW,
and e the unit vector along the CDW lattice displacement
direction [19]. One can choose the complex number u exp(iφ)
as the CDW order parameter. By allowing this order parameter
to vary slowly in space and time, u(r, t ) exp[iφ(r, t )], one can
then describe the low-frequency dynamics of a CDW.

In Fig. 2(a), we reproduce one of the experimental results
of Ref. [18], namely, the time dependence of the two-
dimensional (2D)-integrated intensity of the CDW diffraction
peak for different fluences of the laser pump pulse. This in-
tensity is proportional to the squared amplitude of the CDW
order parameter. For smaller pulse fluences, the order param-
eter initially becomes smaller but never vanishes entirely and
then quickly recovers to almost the initial value. For higher
fluences, the CDW first disappears, i.e., becomes totally
melted, but then it recovers over much longer times, in fact,
not reaching the equilibrium value on the timescale acces-
sible in the experiment. The subsequent theoretical analysis
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(a)

(b)

CDW DGPE Vorticity

FIG. 1. Sketch of the mapping of a CDW dislocation
u cos[qCDWrm + φ(rm )] onto a vortex of the DGPE U (1) lattice
variables u exp[iφ(rm )]. (a) 2D slice of the CDW dislocation (left)
vs 2D slice of the DGPE vortex (right). (b) Three-dimensional
representations of a vortex loop: CDW (left) vs DGPE lattice
(middle) vs vorticity of the DGPE lattice defined in the text (right).

of Ref. [19] concluded that the above slow recovery cannot
be explained by the amplitude dynamics of the CDW order
(see also Refs. [28,29]). The amplitude takes about 2 ps to

(a)

(b)

FIG. 2. (a) Time evolution of experimentally measured 2D-
integrated intensity of the CDW electron diffraction peak after
photoexcitation, for several laser photoexcitation densities (from
Ref. [18]). (b) Numerically calculated 2D-integrated intensity I2 ≡∑

kx ,ky
|ψ (kx, ky, 0)|2 tracking the ordering in the system [see Eq. (6)]

as a function of time for different quench intensities. The color of the
curves encodes different quench intensities as indicated on the color
bar. Each numerical data point represents the average of 40 quench
realizations, and the error bars represent the statistical uncertainty
associated with this average. Inset: Variation of the energy density
during quenches. The horizontal line marks the critical energy den-
sity εc [see Fig. 3(a)] above which the order is destroyed.

relax [18,19] It is the phase relaxation happening afterwards
that we aim at describing in this Letter.

The model. Our numerical model, DGPE, is a space-
discretized version of the continuous Gross-Pitaevskii equa-
tion (GPE). Both can be considered as possible dynamical
extensions of the static XY model. The GPE describes the
low-temperature dynamics of superfluid Bose gases, while the
DGPE is often used to describe bosons on optical lattices.
We note that both the spatially inhomogeneous CDW order
u(r) exp[iφ(r)] and the DGPE share the U (1) structure of
the dynamical variable, and both also exhibit a spontaneous
symmetry breaking transition into a U (1)-ordered state. The
actual dynamics of the inhomogeneous CDW is different and,
in many respects, more complex than that of DGPE. Real
CDWs are dissipatively coupled with the electrons and with
the lattice degrees of freedom, while the DGPE dynamics
is time reversible. Yet, due to the large number of degrees
of freedom involved in the simulations, DGPE delivers an
effectively dissipative environment for the smaller number of
variables associated with the formation of topological defects
over larger spatial scales. It can be reasonably expected that
the detailed character of the thermal bath is not crucial here,
and therefore the thermal bath of the real CDW system can
be efficiently replaced by the bath associated with the micro-
canonical thermalizing dynamics of the DGPE lattice.

To connect the CDW dynamics and the DGPE, we divide
the crystal lattice into cells of sizes lx × ly × lz, where lx, ly,
and lz are of the order of the CDW coherence lengths for the
respective directions. The mapping is achieved by associating
the DGPE lattice variable ψ j with the average of the CDW
order parameter over the CDW cell around position r j :

ψ j ∼ 〈u(r)eiφ(r)〉 jth cell. (2)

Given the crystal anisotropy of LaTe3, the coherence length
for the direction perpendicular to the Te layers, lz, should be
significantly smaller than lx and ly. We expect that lx, ly, and
lz can be chosen such that the renormalized phase stiffness
between adjacent anisotropic unit cells can be modeled with
the help of the same constant J [30–32] for all three direc-
tions. Each cell is thus represented by a single site of the
cubic DGPE lattice. The modeling is classical, since, for large
enough cells, the quantum fluctuations can be neglected.

The time evolution of ψ j is to be modeled by the DGPE on
a cubic lattice,

i
dψ j

dt
= −J

∑

k∈NN( j)

ψk + U |ψ j |2ψ j, (3)

where the summation over k runs through all nearest neigh-
bors NN( j) of site j, coefficient J is the “hopping” parameter,
and U is the interaction parameter. The lattice has V sites.
In the simulations, the typical lattice dimensions were 50 ×
50 × 50. DGPE conserves the total energy of the lattice
E ≡ ∑

j (−J
∑

k∈NN( j) ψkψ
∗
j + U

2 |ψ j |4) as well as the “to-
tal norm” N ≡ ∑

j |ψ j |2. We also define the energy density
ε ≡ E/V − U/2 and the “norm density” n ≡ N/V . The
character of the DGPE solutions is determined by the di-
mensionless parameter g ≡ Un/J , which, for the reasons
explained later, was chosen to be equal to 10. Below, except
for the period of quench, we simulate an isolated DGPE lat-
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(a) (b)

FIG. 3. Temperature dependence of various parameters for the
3D DGPE lattice: (a) The equilibrium order parameter |�eq|2 and the
energy density ε, and (b) specific heat cv .

tice, which, when perturbed, is observed to exhibit dynamic
thermalization [33,34] to a microcanonical temperature T
that was determined numerically as in Refs. [35–38]. The
computed temperature is a monotonic function of ε. For
g = 10, J = 1, n = 1, the DGPE exhibits a spontaneous sym-
metry breaking transition at the critical temperature Tc ≈ 4.25
into low-temperature ordered state characterized by the U (1)
order parameter �(t ) = |�(t )|eiφ(t ) ≡ 1√

nV

∑
j ψ j (t ). In equi-

librium, |�| = |�eq|(T ), where |�eq|(T ) is a decreasing
function of T for T < Tc, vanishing above Tc. Both ε(T )
and |�eq|2(T ) are plotted in Fig. 3(a). The heat capacity
cv (T ) ≡ dε/dT is shown in Fig. 3(b); it exhibits a very rec-
ognizable cusp at T = Tc corresponding to ε = εc.

In principle, Eq. (3) can be generalized to include disor-
der representing the CDW pinning centers. However, in the
target experiment [18], the slowdown of the recovery of the
CDW coherence was observed on the spatial scale where no
evidence of the presence of the pinning centers was detected.

Parameters. To finalize the mapping, we provide the order-
of-magnitude estimates for the three parameters of the cubic
DGPE lattice, namely, J , n, and U .

Since the CDW coherent domains are supposed to be larger
than the crystal unit cell, the CDW phase dynamics should
occur at typical frequencies smaller than the Debye frequency
�D. Hence, the parameter J , which determines the charac-
teristic frequency of the DGPE dynamics, can be roughly
estimated as

J = �D
a

l
, (4)

where a ≡ (axayaz )1/3 and l ≡ (lxlylz )1/3 are the geometrical
averages of the crystal lattice periods ax, ay, az and the CDW
coherence lengths lx, ly, lz, respectively. We use the mean-field
theory [39], which is supposed to be rather crude for LaTe3, to
make the order-of-magnitude estimate l = h̄vF/(1.76πkBTc),
where vF = 2εF/pF is the Fermi velocity, and Tc is the
CDW phase transition temperature. Thus εF ≈ 1.5 eV [40],
pF ≈ 3π

8
h̄
a , Tc ∼ 700 K. As a result, we get l ∼ 6a. Inserting

this together with �D ∼ 4 THz into Eq. (4) gives J ∼ 4 ps−1.
The typical value for n can be derived from the fact that, at

the critical temperature, the hopping energy is of order of the
thermal energy Jn ∼ kBTc. Thus

n ∼ kBTc

J
∼ h̄

Tc

TD

l

a
. (5)

At the last step, we replaced h̄�D in Eq. (4) with kBTD, where
TD ∼ 200 K is the Debye temperature for LaTe3 [41]. Thus

n/h̄ ∼ 20, which is consistent with the classical character of
our modeling.

Parameter U can be determined by matching the speed of
phasons cph with the speed of low-frequency excitations of
the DGPE lattice: cph = l

√
2JUn [32]. In turn, cph can be

crudely estimated as the speed of sound [42]. It is further
shown in the Supplemental Material [32] that, under these
assumptions, U ∼ 10 J

n . Therefore, our simulations were done
with g = Un/J = 10.

Simulations of nonequilibrium quenches. According to
Ref. [19], the energy deposited by the laser pulse into LaTe3

is first absorbed by the electrons, then transferred partially
to the “hot phonons,” drastically increasing their temperature
and thereby melting the CDW order. After that, the energy
of the hot phonons is transferred to the rest of the phonons,
which have significantly larger specific heat. This brings the
overall temperature of the system to nearly the same tem-
perature as the one before the pulse. The phase degrees of
freedom we aim at describing with the help of the DGPE
are supposed to belong to hot phonons. We model the above
process by first quickly pumping the energy into the DGPE
lattice (heating of hot phonons by electrons) and then quickly
removing the energy from the lattice (cooling of hot phonons
by the energy transfer to the main phonon bath). Technically
the above scheme is implemented by temporarily adding the
energy-nonconserving terms to the right-hand side of Eq. (3)
as explained in Refs. [32,36,43,44].

We simulated a set of quenches starting from the equi-
librium state at T ≈ 0.4Tc and then using varying amounts
of energy deposited to and then removed from the system,
and averaged over 40 random initial conditions, thermalized
before the quench for t = 600J−1 [32]. The time dependen-
cies of energy during the quenches are shown in the inset
of Fig. 2(b). These quenches imitated the experimental laser
pulses of different fluences used to produce the experimental
plots in Fig. 2(a).

To compare our simulation with the diffraction experi-
ment [18], we define the two-dimensional integrated spectral
weight I2(t ) by the following equality,

I2 =
∑

kx,ky

|ψ (kx, ky, 0)|2, (6)

where ψ (k) = V −1 ∑
j ψ jeik·r j is the Fourier transform of

ψ j . Summation in Eq. (6) runs over quantized momentum
projections kx,y lying in the Brillouin zone, while kz = 0.
Definition (6) mimics the 2D-integrated diffraction intensity
measured experimentally in Ref. [18] [see Fig. 2(a)]. The
square of the order parameter amplitude |�|2 is the largest
contributing term in the sum (6). However, I2 > |�|2 since
shorter-range order fluctuations enhance I2 relative to |�|2.
Thus, one can think of I2 as a quantity tracking both long-
range and short-range correlations in the DGPE system. We
have further verified [32] that I2(t ) is proportional to the
correlation length of the CDW order, lc(t ), as anticipated in
Refs. [18,19].

The main panel of Fig. 2(b) presents I2(t ) before, dur-
ing, and after the quench. The comparison between the
simulation and the experiment reveals a remarkable agree-
ment: At small intensities of the quench, the spectral intensity
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quickly recovers its prequench equilibrium value on the
timescale comparable to the duration of the quench itself. As
the quench intensity grows, the character of the dynamics
undergoes a qualitative change: I2 drops to zero and stays
low for a finite time interval. This happens when, during the
quench, the energy crosses the critical value εc associated with
the phase transition and indicated by the dashed line in the
inset of Fig. 2(b). Most importantly, the postquench recovery
is extremely slow: The corresponding curves visually split
away from the curves representing weaker quenches.

Topological defects. Here, we investigate the possible con-
nection between the slowdown of the order recovery and the
dynamics of topological defects. For 3D DGPE systems with
periodic boundary conditions, the topological defects form
closed-loop vortices [45]. In this respect, the 3D DGPE model
is similar to the three-dimensional O(2), U (1), and XY mod-
els, where the percolation of vortex loops is responsible for a
phase transition [46–48].

To monitor the local topological charge (vorticity), we
define the dual lattice by translating the original lattice by
vector (1/2, 1/2, 1/2). Each of the sites of the dual lattice
is thus surrounded by six square plaquettes of the original
lattice.

As an indicator of vorticity we use the finite-difference
counterpart w j of the continuous curl of the current (∇ × vs) j ,
where vs = −i(ψ∗∇ψ − ψ∇ψ∗) (see Supplemental Mate-
rial [32]). In Figs. 4(a) and 4(b), we provide a space-resolved
snapshots of field w j generated in the course of the quenches
shown in Fig. 2(b). The snapshots correspond to the two states
marked in Fig. 2(b) by red and gray triangles. In principle,
each site of the dual lattice has a nonzero vorticity w j , which
is the consequence of the discreteness of the lattice field.
However, in the absence of a real vortex, such a vorticity
is very small and does not form any line pattern, while the
presence of a vortex is indicated by the large values of w j

showing the vortex core as a colored “tube” extended through
the lattice.

Figure 4(a) illustrates a weak quench, for which the order
(quantified by I2) recovers quickly. One can see that the sys-
tem does not exhibit any colored tube indicative of a vortex.
For more intensive quenches, on the contrary, one can observe
vortex tubes percolating through large volumes of the sys-
tem and forming clearly identifiable large vortex loops [see
Fig. 4(b)] [see also Figs. S7(a)–S7(c) and the video in the
Supplemental Material [32]]. As one can see, for example,
in the video, these loops initially form an entangled network.
The crossings of the loop lines then lead to smaller loops
separating from this network and collapsing, while one large
loop spreading over most of the lattice is eventually being
formed. The time required for that last loop to shrink and col-
lapse is what determines the timescale of the order recovery
in Fig. 2(b).

We also introduce an auxiliary binary vorticity vari-
able Qj for each dual lattice site [32]: It is defined such
that Qj = 1, if at least one of the six adjacent original-
lattice plaquettes has nonzero vorticity; otherwise Qj = 0.
Finally, we define the average vorticity for the entire system
as Qav = 1

V

∑V
j Qj .

Further evidence that the relaxation of vorticity Qav(t ) is
directly correlated with the order recovery after a quench is

(a) (b)

(c)

(d)

FIG. 4. (a), (b) Snapshots of vorticity for two individual
quenches at time t = 20J−1: (a) weak quench, (b) strong quench,
marked in (c) and (d) by gray and red triangles, respectively [also
shown in Fig. 2(b)]. Vorticity w j is depicted by (colored) arrows
whose length is proportional to |w j | (see the text). For the visu-
alization purposes, we apply a smoothing filter to w j : At site j
we plot w j averaged over 9 sites comprising a cube with side 3
encompassing site j. The arrow color represents the position along
one of the lattice axes, as shown by the color bar. In (a) these arrows
are visible as mere dots due to the smallness of |w j |. In (b) longer and
hence brighter arrows merge into distinctly visible wormlike bundles
revealing vortex cores. Vortex lines penetrating the entire system are
clearly seen for the stronger quench. (Further snapshots of vorticity
for the later times of the stronger quench can be found in the Sup-
plemental Material [32].) (c), (d) Correlation between vorticity and
the slowing down of the order recovery for the simulated 3D DGPE
lattice. (c) The 2D-integrated intensity I2(t ), same as Fig. 2(b) but
over a longer time interval; (d) the average vorticity Qav(t ). The color
coding and the statistical ensemble behind the sampling are used the
same as in Fig. 2(b). (d) Inset: Dependence of the order parameter
recovery time τr on the linear lattice size V 1/3.

presented in Figs. 4(c) and 4(d): There the strong quenches
exhibiting the slowdown of the I2 recovery are accompanied
by pronounced slowly relaxing tails of Qav(t ).

In the inset in Fig. 4(c), we show that the order parameter
recovery τr , defined as the time to reach 75% of the initial
equilibrium value of |�|2 for the strongest quench, grows with
the lattice volume (number of lattice sites) V . The simula-
tions are consistent with the scaling τr ∝ V 2/3. We have not
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attempted to derive this power law. Yet, the growth of τr with
the lattice size as such indicates that the recovery of the order
is contingent on the disappearance of the extensive vortex
loops that penetrate the entire system and need to drift by the
distances of the order of the lattice size before they annihilate.

Conclusions. In conclusion, our direct simulations of the
DGPE lattice with a CDW-like form of the order parame-
ter are consistent with the conjecture of Ref. [18] that the
observed slowdown of the recovery of the CDW order after
laser-induced melting is due to the emergence and then slow
disappearance of topological defects in the order parameter

texture. We were able to numerically monitor the vorticity
in the system and thereby establish the correlation between
the relaxation of vorticity and the recovery of the order. In a
broader context, our investigation illustrates the viability of
using DGPE for simulating the CDW dynamics even though
DGPE as such was historically introduced to describe super-
fluid systems.

The source code is published in a GitHub repository [49].
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