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Quasi-one-dimensional systems exhibit many-body effects elusive in higher dimensions. A prime example is
spin-orbital separation, which has been measured by resonant inelastic x-ray scattering (RIXS) in Sr2CuO3. Here,
we theoretically analyze the time-resolved RIXS spectrum of Sr2CuO3 under the action of a time-dependent
electric field. We show that the external field can reversibly modify the parameters in the effective t-J model
used to describe spinon and orbiton dynamics in the material. For strong driving amplitudes, we find that the
spectrum changes qualitatively as a result of reversing the relative spinon to orbiton velocity. The analysis shows
that in general, the spin-orbital dynamics in Mott insulators in combination with time-resolved RIXS should
provide a suitable platform to explore the reversible control of many-body physics in the solid with strong laser
fields.
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Introduction. Electrons in strongly correlated materials can
be characterized by charge, spin, and orbital quantum num-
bers. In a prototypical Mott insulator, the charge becomes
localized by the electron-electron repulsion, leading to highly
intertwined spin-orbital physics and a variety of ordering phe-
nomena [1]. In low-dimensional materials, the effect of the
Coulomb repulsion can be even more exotic, and the electron
can fractionalize into spin and orbital excitations [spin-orbital
separation (SOS)] [2,3] in analogy to spin-charge separation
(SCS) [4–6]. Ultrashort laser pulses have opened avenues to
control the many-particle physics in solids out of equilibrium
[7–9]. A particularly versatile concept is Floquet engineering,
where the Hamiltonian of a system is dynamically modified
with time-periodic fields, as employed widely in optical lattice
experiments [10–13]. For example, a control of SCS has been
proposed through Floquet engineering of the t-J model [14].
In solids, however, a major challenge to implement a similar
dynamic control is the heating due to photon absorption from
the drive. Few theoretical proposals have so far been realized,
such as Floquet-Bloch states of weakly interacting electrons
[15–17]. Only very recently, a seminal experiment has shown
the Floquet control of nonlinear local properties in a strongly
correlated compound [18].

In this Letter, we show that the spin and orbital degrees
of freedom in Mott insulators provide a promising platform
to realize a dynamic control of dispersive many-body physics
in solids, and in particular, electron fractionalization. As dis-
cussed in Ref. [18], the Mott gap implies a large transparency
window that limits heating via multiphoton absorption, as
needed for Floquet engineering. A large gap can also make the
insulator robust against tunneling breakdown in static fields
[19,20]. This allows for alternative, less explored pathways to
control the low-energy spin-orbital physics with slowly vary-
ing strong field transients. Moreover, spin-orbital excitations
can be probed using resonant inelastic x-ray scattering (RIXS)

[21,22], and recent upgrades of free-electron lasers should
provide a sufficient time (∼30 fs) and energy (∼0.05 eV)
resolution to resolve their dynamics [23,24].

We particularly focus on the charge-transfer insulator
Sr2CuO3. The spin-orbital excitations in this material are well
described by an effective t-J model, where t refers to the
hopping matrix element for an orbital excitation, which is very
different from the original electronic tunneling, and J is the
usual spin exchange constant. The model displays signatures
of SOS, as clearly visible in static RIXS [3]. The orbiton
in Sr2CuO3 turns out to be slower than the spinon, with a
speed comparable in magnitude (J/t = 2.8). Notice that this
situation is very different from the typical case of SCS, where
t refers to the original hopping of a charge excitation, which is
typically much faster than the spinon. In the case of Sr2CuO3,
the ratio t/J should therefore be controllable over a wide
range, eventually allowing for a nontrivial dynamic switch
between distinct regimes in which the spinon is either faster
or slower than the orbiton.

Equilibrium Hamiltonian. The quasi-one-dimensional
charge-transfer insulator Sr2CuO3 can be described as a chain
of alternating copper and oxygen atoms in 3d9 configuration
and with filled 2p orbitals. This makes it convenient to work
in a hole representation, with one hole per unit cell. The low
point-group symmetry of the crystal entirely lifts the degen-
eracy of the Cu 3d orbitals, and the ground state is a Mott
insulator with one hole in the 3dx2−y2 orbital (termed a in
the following). Without any orbital excitation the Hamiltonian
of the system is a Heisenberg model with antiferromagnetic
exchange J . The motion of orbital excitations on top of this
can be described by an effective t-J model [25], which is
found well in agreement with experiment [3],

Ht-J = −t
∑

j,σ

(p†
jσ p j+1σ + H.c.) − E

∑

j

ñ j +Hs. (1)
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Here, the fermion operator p jσ creates an orbital excitation
where a hole with spin σ at site j is transferred to another
orbital b, and ñ j counts the holes in the a orbital; S j is the spin
of the Cu hole, andHs = J

∑
j (S jS j+1 − 1

4 ñ j ñ j+1) a Heisen-
berg Hamiltonian. An analogous Hamiltonian can be written
for different orbitons. Here, we focus on b ≡ 3dzx, which turns
out to have the broadest dispersion among the 3d orbitals.
To derive this model [25], the valence bands of Sr2CuO3 are
described by an ab initio charge-transfer Hamiltonian Hc−t

with nearest-neighbor hopping, local Hubbard interaction and
Hund’s coupling, charge-transfer energy between the Cu and
oxygen states, and a nearest-neighbor Coulomb repulsion [26]
(for details, see the Supplemental Material [27]). The large
electron-electron repulsion justifies a strong-coupling expan-
sion, which projects out doubly occupied orbitals and Cu-O
charge-transfer excitations, and results in a Kugel-Khomskii
Hamiltonian [28] for the spin and orbital degrees of freedom
of the Cu hole. Spin and orbital superexchange proceeds via
the O 2p orbitals and is therefore obtained from a fourth-order
perturbation expansion in the p-d hopping [29]. By neglecting
spin-flip processes in the hopping of the hole in the b orbital,
and choosing a Jordan-Wigner representation for the orbital
pseudospin, the Kugel-Khomskii Hamiltonian is then mapped
on the t-J model Eq. (1). In this way, J > 0 and t in Eq. (1)
relate to the spin and orbital superexchange interaction, and
E is related to the crystal field splitting. When the orbiton is
present, the first part of Eq. (1) describes its motion in a Neél
antiferromagnetic background. The equilibrium parameters in
Eq. (1) for Sr2CuO3 are [25] t ∼ 0.085 eV, J ∼ 0.238 eV, and
E ∼ 1.999 eV. The large ratio J/t ∼ 2.8 is indeed aberrant
compared to the typical value of the spin-charge t-J model ob-
tained from a single-band Hubbard model at large interaction
U [30]. In the latter, the parameter t is the original electron
hopping, and J = 4t2/U � t , while in Eq. (1) both t and J
originate from a fourth-order perturbation expansion.

Below we will analyze how external fields can be used to
control t and J over a wide range, covering both J/t > 2 (fast
spinon regime) and J/t < 2 (slow spinon regime).

To prepare for this analysis, we first discuss the equilibrium
orbital spectral function χ (ω, k) = −1/π Im Gk (ω + i0+) of
the momentum-dependent single orbiton propagator Gk; Gk

is the Fourier transform Gk = 1/L
∑L−1

j, j′=0 eik( j′− j)Gj′, j of the
real-space propagator

Gj′, j (t
′, t )=−i〈�0|Us(t0, t ′)p†

j′σUt−J (t ′, t )p jσUs(t, t0)|�0〉.
(2)

Here, |�0〉 is the initial ground state (no orbital excitation) at
time t0 → −∞, and Us and Ut-J denote the time evolution
in the Heisenberg and t-J model, respectively. The resulting
spectrum shows a distinct form in the slow [Fig. 1(a)] and
fast [Fig. 1(b)] spinon regime. Note that the spectral func-
tion χ (ω, k) of the effective t-J model corresponds to the
dynamical momentum-dependent orbital structure factor of
the electronic model. This quantity is entirely unrelated to
the electronic spectral function, which measures final states
at a different electron number [such as electron removal
for an angle-resolved photoemission spectroscopy (ARPES)
measurement [31]].
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FIG. 1. Spectral function χ (ω, k) in the (a) slow (J/t = 0.4) and
(b) fast (J/t = 2.8) spinon regime, computed on a chain with L = 18
sites and Gaussian broadening. Red dots are obtained with the spin-
orbital separation ansatz with Ef = E + J and (a) t f = t , Jf = J and
(b) t f = t/2, Jf = J .

As a consequence of the spin-orbital separation, insight
into the form of χ (ω, k) can be acquired from a semiphe-
nomenological spectral building principle [32,33]: Assuming
that the orbital excitation separates into a spinon and an
orbiton, which are treated as independent particles with dis-
persion εs(ks) = πJf /2 | cos ks| for −π/2 � ks � π/2 [34]
and εo(ko) = E f − 2t f cos ko, respectively, spectral weight in
χ (ω, k) should be found at energies ε(k) = εs(ks) + εo(ko),
with a constraint k = ks + ko due to momentum conserva-
tion. Hence, one expects the peaks of χ (ω, k) at ε(k) =
E f − 2t f cos ko + Jf

π
2 | cos (k − ko)|. A 1/L correction to the

momentum of the orbiton has to be applied on account of pe-
riodic boundary conditions [34,35]. In Fig. 1, ε(k) is shown by
red dots. In the slow spinon regime, the spectrum is enclosed
by the lower and upper orbiton branches [6,36], and there is
an overall good agreement between the numerical results and
ε(k). In the fast spinon regime, the spectral building principle
still reproduces the lower bound of the spectrum, although the
parameter t f needs to be renormalized with respect to the bare
t due to further dressing of the orbiton [37]. The transition
between these two regimes can be located at the so-called
supersymmetric point J/t = 2, where the t-J model becomes
exactly solvable by the Bethe ansatz [38].

Nonequilibrium effective Hamiltonian. To include the ef-
fect of the driving laser, we couple the charge-transfer
HamiltonianHc−t to an electromagnetic field using the Peierls
substitution [39,40]. In the length gauge within the electric-
dipole approximation [41–43], this is equivalent to adding a
scalar potential � j (t ) = −eE (t )Xj at each site (independent
of the orbital), where e is the elementary charge, E (t ) the
time-dependent electric field, and Xj = jã/2 represents the
position along the chain, with the copper-copper distance ã ∼
0.392 nm [44]. We neglect the renormalization of the hopping
due to dipole matrix elements. Below, we parametrize the time
dependence of the electric field as E (t ) = S(t ) cos(	t ), with
an oscillatory part and an envelope S(t ) with maximum ampli-
tude E0. The time-dependent modification of the parameters t
and J is then understood in two distinct limits:
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FIG. 2. (a) Effective parameters Jφ and tφ vs the potential field
gradient �φ (electric field amplitude E0) in the lower (upper) hor-
izontal axis for the quasistatic regime and (b) the corresponding
change in the characteristic value J/t . The horizontal dashed line
shows the value J/t = 2 separating the slow and fast spinon regime.

In the quasistatic limit, one can derive a t-J Hamiltonian at
a given time t by repeating the strong-coupling perturbation
expansion including energy shifts of the orbitals caused by
the instantaneous scalar potential difference �φ = eãE (t )/2
between neighboring sites. The potential modifies the virtual
intermediate state of the perturbation expansion, and yields
field-dependent parameters tφ , Jφ , and Eφ in Eq. (1). (For ex-
plicit expressions, see the Supplemental Material [27].) This
quasistatic argument should apply to slowly varying fields
	 � t, J , up to several 10 THz given the values of t and
J . Both Jφ and tφ increase with �φ, leading to an overall
decrease of the ratio J/t (Fig. 2). The intrinsic limitation
to the quasistatic control of the spin-orbital physics is the
tunneling breakdown of the insulating state, which would lead
to a population of real charge-transfer excitations. The most
rapid breakdown is expected when the gradient �φ is resonant
to the nearest-neighbor charge-transfer energy ECT. Simu-
lations in one- and two-band Hubbard models consistently
show that the carrier generation rate becomes exponentially
suppressed for fields sufficiently below ECT [19,20,45]. The
fields needed to decrease the ratio J/t below the super-
symmetric point are well below this resonant amplitude
ECT ∼ 130 MV/cm (�φCT = 2.6 eV) for the present system,
so that a control of the spin-orbital physics should be possible
at least transiently.

In the Floquet limit, one can conveniently write a time-
periodic Hamiltonian in the Floquet basis by moving from
the Fock space F of the original problem to a larger space
F ⊗ T , with T the Hilbert space of the square-integrable
periodic functions with period T = 2π/	. States in the ex-
tended space are labeled by an additional discrete index n,
which can be understood as the number of photons absorbed
or emitted relative to the drive. The representation of H (t )
on the enlarged Fock space is called the Floquet Hamiltonian
HFl

c−t , which defines an effective static problem that describes
the stroboscopic evolution of the driven system. SinceHFl

c−t is
time independent, one can use a strong-coupling perturbation
expansion analogous to the undriven case to derive the fourth-
order spin-orbital superexchange interactions underlying the
t-J model Eq. (1). The Floquet control of superexchange

FIG. 3. [(a), (b)] Effective parameters tE,	 and JE,	 vs the Flo-
quet parameter E for several driving frequencies 	. (c) JE,	/tE,	 as
a function of 	 and E. The white areas correspond to regimes in
which JE,	/tE,	 lies outside the indicated range. The dashed lines
show the leading Floquet resonances in the given frequency range,
which involve a virtual transition to the n = 4 Floquet sector.

interactions has been derived for various situations, including
exchange interactions in the magnetic [46–48] and charge
sector [49] of the single-band Hubbard model, antisymmetric
exchange interactions which may stabilize chiral spin liquids
[50], and superexchange via ligand ions [51]. To derive the
superexchange interaction in the Floquet representation in the
present case, we project out both virtual charge excitations and
states in Floquet sectors n �= 0 (virtual photons). The emis-
sion or absorption of n virtual photons during an electronic
hopping process shifts the energy of the intermediate states
of the superexchange process by ±n	. The matrix elements
for such processes are controlled by the Floquet parameter
E = eãE0/(2	). Explicit calculations and results for the de-
pendence of tE,	, JE,	, and EE,	 on E and 	 are provided in
the Supplemental Material [27].

In the following, Floquet theory is applied for frequen-
cies 	 > t, J , but below the optical gap �gap ∼ 1.6–1.8 eV
[52] to limit charge-transfer excitations due to linear pho-
ton absorption. By avoiding the Floquet resonances (resonant
frequencies for which the intermediate-state energy in the su-
perexchange process would vanish), one can further also limit
multiphoton absorption. In contrast to what is observed in the
quasistatic limit, it is possible to both decrease and increase
the hopping tE,	 with respect to the equilibrium value [see
Fig. 3(a)], while JE,	 can only increase in the analyzed do-
main [see Fig. 3(b)]. The ratio J/t can therefore be controlled
in a wide range below the supersymmetric point J/t = 2 [see
Fig. 3(c)]. For example, for 	 ∼ 0.78 eV the regime J/t < 2
is reached for a Floquet parameter E ∼ 2. Divergences of
J/t appear upon increasing E at fixed 	 due to a localiza-
tion of the orbiton (t = 0) when the spin excitations remain
mobile [14].

Time-resolved RIXS. To verify the dynamic control over
the superexchange interactions described in the previous sec-
tion, one needs an experimental probe able to follow the
transient change of the spectrum over the whole Brillouin
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zone. Time-resolved RIXS (trRIXS) seems particularly suit-
able for this task. The incoming photon with energy ωi,
momentum ki, and polarization ei excites the hole originally
in the a orbital to the 2p core state of a copper atom. This
highly unstable intermediate state can decay within a few
femtoseconds to the b orbital by emitting a photon with energy
ω f , momentum k f , and polarization e f , leaving the system
with a d-d excitation. In principle, the hole can also decay
into other d orbitals, but we are only interested in the b
channel, as motivated previously. Thus, measuring the en-
ergy loss (ω = ωi − ω f ) and momentum loss (k = ki − k f )
of the photon allows us to probe the excitation spectrum
of the compound. For the short-lived intermediate state, one
can apply the ultrashort core-hole approximation (UCA) [53],
which describes the photon scattering via the intermediate
state in terms of a single RIXS operator B. The UCA is
well established in interpreting static RIXS probes of the
dynamics of spin and orbital excitations in equilibrium [3].
With core hole lifetimes in the range of few femtoseconds,
the UCA remains justified also for trRIXS of processes on the
100 fs timescale, as in the present case. In the Supplemental
Material [27], we derive the trRIXS signal within the UCA,
starting from the general expression for trRIXS in terms of a
four-point correlation function [54,55]. The result can be writ-
ten as IRIXS = 2(|B↑↑

eie f |2 + |B↑↓
eie f |2)χ (ω, k, t̄ ). Here, B↑↑

eie f and

B↑↓
eie f are the matrix elements of the RIXS operator [56,57],

which will be the same for time-resolved and static RIXS,
and χ (ω, k, t̄ ) is the convolution of the propagator (2) with
probe functions centered around a probe time t̄ , χ (ω, k, t̄ ) =
i
∫

dt ′dt s(t ′, t̄ )s(t, t̄ )e−iω(t−t ′ )Gk (t ′, t ). The probe pulse is
thereby described semiclassically by the Gaussian envelope
s(t, t̄ ) = exp[−(t − t̄ )2/(2σ 2

pr)].
In the following, instead of analyzing IRIXS, we focus

on χ (ω, k, t̄ ), which does not depend on the details of the
experimental apparatus used to measure the RIXS signal.
Despite the similarity of the above relation for IRIXS to the
angle-resolved photoemission spectroscopy signal, the two
quantities actually rely on different expressions for the ef-
fective hopping parameter t (see the Supplemental Material
[27]). The numerical evaluation of the single hole prop-
agator Eq. (2) is done using a Krylov time propagation
scheme with middle point approximation for the time evolu-
tion [58–60].

Dynamic control. As elucidated in the previous sections,
it is possible to achieve control over the parameters t and
J of the effective t-J model Eq. (1) both in the quasistatic
and the Floquet regime. Here, we explicitly demonstrate the
time-dependent modification of the spectrum for the qua-
sistatic limit. We choose the time-dependent profile �φ(t ) to
be Gaussian with variance σpu = 90 fs and maximum value
�φmax = 1.8 eV, as depicted in Fig. 4(a).

In Figs. 4(b)–4(e), we show the time evolution of χ (ω, k, t̄ )
during this time-dependent perturbation. At moderately strong
values of the external field, the spectral function is not
substantially changed with respect to equilibrium, even if
quantitative differences can be observed [see Fig. 4(b)]. How-
ever, around the maximum �φmax one identifies a qualitative
change in the spectrum, with the appearance of a well-defined
upper orbiton branch not present at lower values of the field
[see Fig. 4(c)]. This is a signature of the transition from

FIG. 4. (a) Time-dependent potential field gradient �φ(t )
(�φmax = 1.8 eV, σpu = 90 fs) and resulting change in J/t .
[(b)–(e)] Time-dependent evolution of the spectral function
χ (ω, k, t̄ ) for different probe envelopes with σpr = 20 fs and (b) t̄ =
180 fs, (c) t̄ = 270 fs, (d) t̄ = 360 fs, and (e) t̄ = 450 fs for a chain
length L = 18.

the fast to the slow spinon regime. Indeed, as shown in
Fig. 4(a), the values of the ratio J/t reached at �φmax are
well below the supersymmetric point J/t = 2. As the pump
strength decreases, the spectrum narrows into its equilibrium
shape, which happens reversibly [see Figs. 4(d) and 4(e)]. This
proves the possibility to dynamically control the qualitative
shape of the spectral function and hence of the underlying
collective excitations.

Conclusions. In conclusion, we showed that short pulses
with realistic field amplitudes can be used to reversibly con-
trol the spin-orbital excitations in the quasi-one-dimensional
compound Sr2CuO3. These pulses can substantially change
the relative strength of the t and J parameters in the effective
t-J model which describes the spin and the orbital excitations
in this material. This demonstrates control over the electronic
fractionalization in solids between regimes where the spinon
moves faster than the orbiton and the contrary one. More
generally, the analysis illustrates that the spin-orbital physics
in Mott insulators is a suitable platform to explore the re-
versible control of many-body dynamics in solids with strong
laser fields. In particular, with the improved energy resolution
available at new generation free-electron lasers, spin-orbital
excitations can be probed using trRIXS. Moreover, our anal-
ysis shows that a control of the low-energy physics can
be achieved by two different pathways, i.e., Floquet engi-
neering and a subcycle control with strong THz transients,
which can be seen as two limits of a more general control
of exchange interactions with arbitrary time-dependent fields
[61]. The spatially anisotropic character of the orbital-orbital
interaction, as opposed to the isotropic spin-spin one, sug-
gests a different physics in the two situations. Indeed, the
light modulation of the orbital exchange interaction leads to
a switch of the state of the system from a discrete mini-
mum to another, each corresponding to distinguishable orbital
orders [62]. Besides the exemplary compound (Sr2CuO3) we
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considered, further Mott systems show spin-orbital separa-
tion, and we expect a nontrivial dynamic control in CaCu2O3

[63] or Ca2CuO3 [64], the light control of multispinon ex-
citations in Sr2CuO3 [65], and the control of two-spinon
and two-orbital excitations in the spin-Peierls compound
TiOCl [66].
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