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Symmetry breaking and spectral structure of the interacting Hatano-Nelson model
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We study the Hatano-Nelson model, i.e., a one-dimensional non-Hermitian chain of spinless fermions with
nearest-neighbor nonreciprocal hopping, in the presence of repulsive nearest-neighbor interactions. At half
filling, we find two PT transitions, as the interaction strength increases. The first transition is marked by
an exceptional point between the first and the second excited state in a finite-size system and is a first-order
symmetry-breaking transition into a charge-density wave regime. Persistent currents characteristic of the Hatano-
Nelson model abruptly vanish at the transition. The second transition happens at a critical interaction strength
that scales with the system size and can thus only be observed in finite-size systems. It is characterized by a
collapse of all energy eigenvalues onto the real axis. We further show that in a strong interaction regime, but
away from half filling, the many-body spectrum shows point gaps with nontrivial winding numbers, akin to the
topological properties of the single-particle spectrum of the Hatano-Nelson chain, which indicates the skin effect
of extensive many-body eigenstates under open boundary conditions. Our results can be applied to other models
such as the non-Hermitian Su-Schrieffer-Heeger-type model and contribute to an understanding of fermionic
many-body systems with non-Hermitian Hamiltonians.

DOI: 10.1103/PhysRevB.106.L121102

Introduction. Non-Hermitian topological phases constitute
one of the most recent active research fields in condensed mat-
ter, cold atom, and photonic physics [1–33]. They have been
experimentally realized in different platforms of high con-
trollability [34–50]. So far, most previous efforts have been
devoted to single-particle physics, with no or only perturbative
many-body interactions. It is well known that in Hermitian
systems strong interactions among particles give rise to many
exotic phenomena, such as unconventional superconductivity,
Mott insulators, and density-wave ordering [51–53]. Thus it is
of fundamental interest to explore non-Hermitian phenomena
in many-body systems with strong interactions [54–79]. Most
of the existing studies on this subject are focused on the
issues of non-Hermitian many-body localization [56–59] and
the non-Hermitian skin effect [61–69]. However, many-body
interaction effects, especially on bulk fermionic properties,
remain largely unexplored even in simple models.

In this Letter, we study the Hatano-Nelson model of spin-
less fermions, a prototypical one-dimensional non-Hermitian
system with nearest-neighbor nonreciprocal hopping [80], in
a ring geometry and under the presence of the Pauli principle
and strong Coulomb interactions. At half filling [Fig. 1(a)],
we find that, as the interaction strength increases, the imag-
inary energies of the many-body spectrum are substantially
suppressed, giving rise to two PT transitions. The first tran-
sition is marked by an exceptional point between two lowest
excited states (LES) [81] of a finite-size system [see a sketch
in Fig. 1(b)]. By employing exact diagonalization, we show
that this transition corresponds to a first-order quantum phase
transition of the ground state from a gapless phase to a gapped

charge-density wave (CDW) that breaks translation symme-
try spontaneously [Fig. 1(c)]. Moreover, it features a sudden
disappearance of the characteristic persistent current of the
Hatano-Nelson model in a low-temperature regime. The sec-
ond transition corresponds to a full collapse of the many-body
spectrum onto the real axis. Its critical interaction strength,
however, increases as the system size grows. Thus it can only
be observed in finite-size systems.

For finite doping away from half filling, the spectrum
stratifies into clusters with states of a different number of
simultaneously occupied nearest-neighbor sites. The energy
clusters have nonzero extents along the imaginary axis being
largely unaffected by interactions. Furthermore, they exhibit
point gaps with nontrivial winding numbers, thus indicating
the skin effect of many-body states in the presence of open
boundaries [13–15,82], also for strong interactions. At half
filling, in contrast, the spectrum shrinks to open lines under
strong interactions. Accordingly, the many-body states extend
over the whole lattice chain with open boundaries.

Interacting Hatano-Nelson model. We consider the inter-
acting Hatano-Nelson model of spinless fermions described
by

Ĥ =
∑

�

[(t + γ )ĉ†
� ĉ�+1 + (t − γ )ĉ†

�+1ĉ� + Un̂�n̂�+1], (1)

where ĉ†
� (ĉ�) is the creation (annihilation) operator of a

fermion at lattice site � and n̂� = ĉ†
� ĉ� is the fermion number

operator with eigenvalues {0, 1}. The fermionic operators ĉ†
�

and ĉ� obey the anticommutation relations, thus imposing
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FIG. 1. (a) Single-particle spectrum and (b) low-excitation-
energy many-body spectrum at half filling in the absence of
interactions. The yellow arc denotes the filled states. Two LES have
momenta Q = ±π and identical Re(E ) but opposite Im(E ) ≈ ±4iγ .
By increasing the interaction strength U to a critical value Uc, the two
LES collapse onto the real axis, as sketched by the arrows. (c) Phase
diagram against γ and U . The gapless phase is adiabatically con-
nected to the Hatano-Nelson model at U = 0, while the CDW phase
is smoothly connected to the CDW phase with γ = 0 and finite U .
The magenta line is the extrapolated UTD in the TDL. It demarcates
the gapless regime and the gapped CDW regime.

the Pauli principle to the system [84]. The real parameters t
and γ denote the reciprocal and nonreciprocal components
of the hopping between neighboring sites, respectively [85].
The last term describes the Coulomb interaction with strength
U � 0 between two fermions at adjacent sites. Without loss
of generality, we set t > 0 to be our unit of energy.

To investigate bulk many-body properties, we consider the
system in a ring geometry with L sites and N particles. For
periodic boundary conditions (PBC) or anti-PBC, the sys-
tem respects a combined space-time-reversal (PT ) symmetry
[84]; thus the eigenenergies of the system are either real or
come in complex-conjugate pairs. For single particles with-
out interactions, the spectrum reduces to a closed orbit with
a point gap [Fig. 1(a)], resulting in the non-Hermitian skin
effect of single-particle states at open boundaries [4–6]. More-
over, the system has a particle-hole symmetry [84]. Thus the
spectrum for N particles is essentially the same (up to an over-
all shift in energy) as that for L − N particles. Both of these
spectral relations are reproduced by our exact-diagonalization
calculations presented below.

Low-energyPT transition and phase diagram. It is instruc-
tive to first analyze the case without interactions (U = 0). In
this case, the many-body spectrum displays a scatter distri-
bution pattern centered at the origin of the complex-energy
plane. When ncl = min(N, L − N ) � 1, its extent along real
and imaginary axes can be estimated as �R ≈ tα{N,L} and
�I ≈ γα{N,L}, respectively, where α{N,L} = 2L sin(πncl/L)/π
[84]. Clearly, the spectrum is larger when the system is larger
and filled closer to half filling. For fixed finite ncl(� L),
however, its extent is approximately independent of L and
determined by α{N,L} ≈ 2ncl.

More intriguing features arise when the interaction is
present. We first consider the half filled (N = L/2) scenario
and show that a PT transition between PT -symmetry-broken
and -unbroken phases occurs at low excitation energies, as

FIG. 2. (a) Flow of the spectrum at half filling as U increases
from 0 (cyan) to 3.5t (red). Insets: spectra at U = 0 and U =
3t , respectively. All eigenenergies become real when U � Uc,all.
(b) |Im(E1(2) )| as a function of U for increasing L. The dependence of
|Im(E1(2) )| on U converges to the red curve as L grows. (c) Maximum
imaginary energy max(Im E ) (blue) and Uc,all (orange) as functions
of L. Both quantities diverge as L → ∞. We consider L = 10 in (a),
γ = 0.2t in all panels, and adopt (anti-)PBC for odd (even) N .

U increases. As illustrated in Fig. 1(b) and the inset of
Fig. 2(a), at U = 0, there is one ground state with real energy
E0 and two LES with complex-conjugate energies E2 = E∗

1
in systems with odd (even) N and (anti-)PBC. When L �
1, we have E0 ≈ 2tL/π and E1 = E∗

2 ≈ E0 + 4t sin(π/L) +
4iγ cos(π/L). As U increases, we find that the energies of the
LES approach each other and merge at an exceptional point on
the real axis at a critical strength U = Uc and split along the
real axis for U > Uc.

To better understand the low-energy PT transition, we
determine Uc for varying γ and increasing L [Figs. 1(c) and
2(b)]. Evidently, |Im(E1(2))| decays monotonically with in-
creasing U (< Uc) and completely vanishes when U > Uc. As
L grows, the dependence of |Im(E1(2))| on U converges to
a curve [red line in Fig. 2(b)]. In the thermodynamic limit
(TDL) L → ∞, Uc converges to a finite value UTD. Specifi-
cally, for fixed γ , Uc shows a power-law scaling as L grows,
i.e.,

Uc = UTD − βL−α, (2)

where α and β are positive numbers depending on γ . This
feature enables us to extrapolate UTD. The phase diagram
parametrized by U and γ is given in Fig. 1(c), where the
red line is UTD which marks the phase boundary in the TDL
[86]. We observe that UTD grows monotonically with γ , in-
dicating that the PT transition occurs even in the TDL and
for ultrastrong nonreciprocity (|γ | � t). More details of the
calculation are given in the Supplemental Material [84].

To further understand the physics behind the phase dia-
gram, we analyze the real part of the low-excitation-energy
spectrum [Fig. 3(a)]. For U < Uc, the two LES are degenerate
in real energy. The finite-size level spacing �01 ≡ Re(E1 −
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FIG. 3. (a) Real part of the spectrum at half filling as a function
of U . Three lowest energy levels are respectively denoted as E0, E1,
and E2. (b) �gap as a function of U . Inset: ln(�01) as a function of
ln(U ). (c) The first and second (inset) derivatives of the free energy
as functions of U . (d) |IP| (in units of e/h̄) as a function of U . We
consider γ = 0.6t in all panels, L = 10 in (a), and kBT = 0.4t and
50 lowest-Re(E ) eigenstates in (c) and (d).

E0) is approximately constant [≈4t sin(2π/L)] for a wide
range of U and increases subtly when approaching Uc [inset
of Fig. 3(b)]. However, �01 decreases as L grows and it
vanishes in the TDL, indicating a gapless phase when U < Uc.
For U > Uc, the LES have vanishing imaginary energy while
being split in real energy. Upon further increasing U , the
energy splitting �gap ≡ Re(E2 − E1) increases, whereas �01

decreases sharply [Fig. 3(b)]. More explicitly, �01 follows
a power-law dependence �01 ∝ U 1−L/2 on L. Thus, in large
systems, one of the LES rapidly becomes degenerate with
the ground state and separated from the excited states by a
large gap �gap, implying a transition of the system into a
gapped regime. The degenerate ground states break translation
symmetry spontaneously, forming a CDW with long-range
density-density correlation [84]. The PT transition may also
be related to the breakdown of the Mott insulator which in-
stead considers two spin species and on-site interactions [83].

Free energy and persistent current. Next, we con-
sider the free energy of the system, which reads F =
−kBT ln(

∑
j e−Ej/kBT ), where T is the temperature, kB is the

Boltzmann constant, and
∑

j sums over all eigenenergies.
Since the eigenenergies are real or come in complex-conjugate
pairs due to the PT symmetry, F is always purely real.
At low temperatures, F is determined mainly by the low-
Re(E ) eigenstates in an energy window of magnitude kBT .
As discussed above, in the TDL, the system is gapless for
U < Uc, whereas it quickly develops a large energy gap after
U > Uc. As a result, F and its derivatives (with respect to U )
change significantly at Uc, provided that �01 < kBT � Uc. In
Fig. 3(c), we calculate the first and second derivatives of F
at low temperatures as functions of U . We observe that, for

L/2 � 1, the first derivative F ′ ≡ dF/dU shows a sudden
drop while the second derivative F ′′ ≡ d2F/dU 2 diverges at
Uc. These features are more pronounced in larger systems,
suggesting that the low-energy PT transition is of first or-
der. This is in sharp contrast to the Hermitian limit (γ = 0),
where the transition is of Berezinskii-Kosterlitz-Thouless type
[87–89] (see also [84]).

In a metallic ring, a persistent current Ip can be induced
as the response of F to a small change of magnetic flux
φ through the ring, i.e., Ip = −(e/h̄)∂F/∂φ [90]. Notably,
by virtue of its non-Hermitian hopping, the Hatano-Nelson
model supports an imaginary current Ip at zero flux for U <

Uc [91]. In the TDL and for U = 0 and T = 0, Ip can be de-
rived as Ip = 4ieγ /h [84]. Moreover, when �01 < kBT � Uc,
Ip is approximately constant for U < Uc, whereas it suddenly
drops to zero for U > Uc, as shown numerically in Fig. 3(d).
For small U , Ip saturates for large L, and it exhibits a sudden
drop at the transition that sharpens with increasing L. This
is in contrast to the persistent current in Hermitian systems
that requires a finite flux and vanishes in the TDL [92]. Note
that the imaginary current characterizes the delocalization of
eigenstates [80]. The sudden disappearance of Ip thus consti-
tutes another indicator of the metal-insulator transition in the
low-Re(E ) regime.

PT transition in the full spectrum. The full many-body
spectrum can also exhibit a PT transition at half filling. As
shown in Fig. 2(a) for |γ | < t , the imaginary part of the
spectrum is dramatically suppressed by increasing U and,
more remarkably, all eigenenergies collapse onto the real axis
after a critical strength Uc,all in a system with odd (even) N
and (anti-)PBC. This full PT transition can be understood as
follows. In the presence of Coulomb interactions, the many-
body Fock states of the system acquire different Coulomb
potentials determined by their occupation configurations [93],
forming different groups with different Coulomb potentials
(we term them Fock components for convenience). At half
filling, we find that the imaginary energies of the spectrum
mainly stem from the nonreciprocal hopping between differ-
ent Fock components. By increasing U , the energy separation
between the Fock components grows and the coupling be-
tween them becomes weaker. Thus the imaginary energies are
suppressed. We stress that the complex-real transition discov-
ered here emerges in the many-body spectrum and is driven
by two-particle interactions, distinctively different from the
complex-real transition in the single-particle spectrum driven
by disorders [80].

The value of Uc,all depends on the system size L and non-
reciprocity γ . In larger systems, there are more excited states
with larger imaginary energies at U = 0. When L � 1, the
maximum imaginary energy max[Im(E )] is approximately
2γ L/π , which grows linearly with L [in contrast to the imag-
inary energies of LES, which is bounded by Im(E1) < 4γ ].
Thus, in order to completely suppress the imaginary ener-
gies, a stronger Uc,all is required. Explicitly, Uc,all scales with
the system size and can thus only be observed in finite-size
systems [Fig. 2(c)]. Similarly, for larger γ , we have larger
imaginary energies at U = 0 and thus larger Uc,all.

For |γ | � t , the imaginary energies stem not only from
the nonreciprocal hopping between different Fock compo-
nents but also from those between the states within the same
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FIG. 4. Many-body spectrum at (a) U = 0 and (b) 20t , respec-
tively. (c)–(e) Movement of the spectral clusters as φ varies from 0
(cyan) to 2π (red). Parameters: L = 10, N = 3, and γ = 0.2t

component. Since these hoppings are not suppressed by the
U -driven separation of the Fock components, the imaginary
energies are a robust property and the full PT transition is
not realized at any finite U .

We also note that the above-discussed PT transitions occur
only in the case with odd (even) N and (anti-)PBC while they
are absent in the case with even (odd) N and (anti-)PBC.
However, we expect the phase diagram in the TDL to be
identical for all the cases [84].

Spectral clusters with nontrivial windings away from half
filling. Finally, we turn to the non-half-filled case where
additional interesting properties emerge in the presence of
strong interactions. First, the many-body spectrum is sub-
stantially redistributed and dispersed from a connected area
in the complex-energy plane into ncl clusters when U > �R

[Figs. 4(a) and 4(b)]. Each cluster corresponds to a Fock
component with a given Coulomb potential. Accordingly,
the clusters are centered respectively around the energies
εs = (N − s)U with 1 � s � ncl labeling the clusters. Second,
each cluster by itself also exhibits a symmetric pattern in
the complex-energy plane. Due to particle-hole symmetry, the
clusters for L − N particles are the same as those for N par-
ticles up to an overall energy shift |2N − L|U . Finally, in the
non-half-filled case, the imaginary energies always comprise
nonreciprocal hopping between states within the same Fock
component. Thus the clusters are insensitive to U in the strong
U regime, except for the cluster centered at ε1, whose extent
shrinks with increasing U .

The spectral clusters can be characterized by nontrivial
topological invariants. To see this, for finite-size systems, we
introduce a twist angle φ to the PBC [8]. When φ increases
from 0 to 2π , all the eigenenergies belonging to cluster s wind
around the center εs in one direction determined by sgn(γ )
[Figs. 4(c)–4(e)]. Thus a nontrivial winding number can be
found as

νs =
∫ 2π

0

dφ

2π i

∑
j

∂φ ln{Ej (φ) − εs}, (3)

where
∑

j sums over all eigenenergies. Specifically, we find
ν1 = sgn(γ )N for s = 1. For other clusters s � 2, νs depend
also on L and diverge as L → ∞. Furthermore, for fixed N
in the TDL, the clusters form at least one continuous orbit
of eigenenergies surrounding each energy center [84]. Hence
the winding numbers of these orbits can also define nontrivial
topological invariants. Note that the winding numbers defined
for the spectral clusters are general for strong interactions
U > �R [94]. The spectrum under open boundary condi-
tions collapses to open lines without windings. The nonzero
winding numbers under PBC indicate the localization of the
many-body eigenstates at the Fock basis states with particles
accumulated at an open boundary (if present) and hence the
localization of the many-body eigen wave functions towards
the boundary [62,69,95], regardless of the Pauli principle and
strong interactions in the system. We show this explicitly in
the Supplemental Material [84]. Our work thus constitutes a
many-body interacting generalization of the spectral winding
number [13–15,82] used to characterize the non-Hermitian
skin effect.

By contrast, at half filling, the spectrum of a finite-size sys-
tem under PBC shrinks to open lines in the strong interaction
regime, as discussed before. In this case, the spectral winding
numbers become ill defined. The many-body wave functions
extend over the whole lattice even with boundaries [84].

Summary and discussion. We have revealed two PT tran-
sitions in the interacting Hatano-Nelson model at half filling
upon increasing interaction strength: one is marked by an
exceptional point between two LES and the other one is
characterized by a full collapse of the many-body spectrum
onto the real axis. The former transition corresponds to a
symmetry-breaking transition into a gapped CDW regime and
features a sudden disappearance of the persistent current at
low temperatures. We have further shown that, with strong in-
teractions but away from half filling, the many-body spectrum
stratifies into multiple clusters characterized by nontrivial
winding numbers.

It is important to note that our main results from the
Hatano-Nelson model are general. They can also be applied
to other models, such as the Su-Schrieffer-Heeger (SSH) type
model that has nonreciprocal hopping for every two nearest-
neighbor bonds, as we have verified in the Supplemental
Material [84]. Our theory may be implemented, for instance,
in open quantum dot [102–105], cold-atom [28,48–50,106–
108], and monitored quantum circuit systems [109,110].

Note added in proof. Recently, we noticed the related
work [111], which focuses on the spectral winding and non-
Hermitian skin effect.
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