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We consider a finite-size topological Josephson junction formed at the edge of a two-dimensional topological
insulator in proximity to conventional superconductors and study the impact of Cooper pair symmetries on
the electron transport. We find that, due to the finite junction size, electron transport is highly tunable by
the superconducting phase difference φ across the junction. At zero frequency and φ = π , the setup exhibits
vanishing local Andreev reflection and perfect normal transmission due to the interplay of finite junction size
and formation of topological Andreev bound states in the middle of the junction. We reveal that this striking
behavior enables odd-frequency Cooper pairs to become the only type of pairing inside the topological junction
that contribute to transport. Our paper thus offers a highly tunable detection scheme for odd-frequency Cooper
pairs.
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Engineering superconducting states with unique function-
alities has lately triggered great interest, not only due to their
unexpected properties but also owing to their potential for
quantum technologies [1]. Odd-frequency superconductivity
is an interesting but less explored superconducting state where
the basic units, the Cooper pairs, are formed by two elec-
trons at different times. These odd-frequency Cooper pairs
are characterized by a wave function, or pair amplitude, that
is odd in the relative time, or frequency ω, of the paired
electrons [2–5]. Initially, the odd-frequency (odd-ω) state was
predicted as an intrinsic effect [6–8], but later it was found
that it can be engineered using simple conventional s-wave
superconductors [9,10].

Heterostructures based on conventional superconductors
have been shown to be the simplest and experimentally most
relevant platform for odd-ω pairing [9–29]. In these systems,
breaking the translational invariance at interfaces serves as
a source of odd-ω pairs [5]. In the additional presence of
spin mixing fields, e.g., from magnetism or spin-orbit cou-
pling, the even- and odd-ω pairs can acquire spin-singlet
and -triplet symmetries, respectively, even when using con-
ventional superconductors [14,30–38]. In all these systems,
odd-ω pairs have provided fundamental understanding of
the proximity-induced superconductivity [2,3,5,39] and have
also enabled the entire field of superconducting spintronics
[40–43]. Despite all the advances, however, there are still sev-
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eral critical questions that remain unresolved. First, in many
cases, the appearance of odd-ω pairing is also accompanied
by an even-ω component that easily obscures the effect of the
odd-ω part, see e.g., Refs. [2,5,10]. Second, most detection
protocols involve observables, such as the local density of
states, that do not directly measure pair correlations [28,35].
Third, the majority of previous work, including experiments,
have mainly used heterostructures with magnetic materials
[24,28,39,44,45], which can easily become rather challenging
as magnetism is detrimental for superconductivity.

With the advent of topological superconductors [46], the
spectral bulk-boundary correspondence [47] predicted a dif-
ferent route for large odd-ω pairs, thus avoiding some of the
previous problems. Topological superconductors have lately
attracted great interest not only because they represent an-
other state of matter but also because they host Majorana
zero modes (MZMs) [46], which are promising candidates
for fault-tolerant quantum computation [48]. Perhaps the most
appealing way to realize topological superconductivity with-
out magnetism combines conventional superconductors and
two-dimensional topological insulators (2DTIs) [49,50]; see
also Refs. [51–54]. 2DTIs have intrinsic strong spin-orbit cou-
pling and host metallic 1D edge states which only experience
Andreev reflections in normal-superconductor (NS) 2DTI-
based heterostructures [55–61]. These Andreev processes
have recently been shown to generate odd-ω spin-triplet
pairs [14,16,21,22], notably without the presence of magnetic
fields, but still accompanied by even-ω pairs that have so far
challenged the identification of odd-ω pairing. As a conse-
quence, despite large interest in odd-ω pairs, the generation of
pure odd-ω pairs and their detection still represent two open
critical problems.

In this paper, we consider a finite Josephson junction
formed at the edge of a 2DTI and identify the Cooper pair
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FIG. 1. (a) Sketch of N-SNS-N junction at the 1D metallic edge
of a 2DTI, with N (S) regions colored green (gray) and a middle N
region of vanishing length. The S regions have finite lengths (LS) and
order parameters, with � and � eiφ for the left and right S regions,
respectively. Horizontal red and blue arrows depict the counterprop-
agating edge modes carrying opposite spin (vertical arrows). (b) An
injected electron (hole) from the leftmost N can be Andreev reflected
(dashed lines) or transmitted (solid lines) into the rightmost N as an
electron due to the helical nature of the 2DTI.

symmetries responsible for the electron transport observ-
ables. In particular, we focus on N-SNS-N junctions with
a very short middle N region and finite S regions, where
superconductivity is proximity-induced from conventional
superconductors and where an external flux controls the super-
conducting phase difference (φ) between them, see Fig. 1(a).
Interestingly, we obtain vanishing local Andreev reflection
and perfect normal transmission at frequency ω = 0 and phase
φ = π as a result of the interplay between the formation of a
pair of topological Andreev bound states (ABSs) and the finite
junction size. We reveal that this behavior is accompanied by
the emergence of only odd-ω mixed spin-triplet pairs in the
middle of the junction, thus unveiling the Cooper pair symme-
try that determines transport in this special regime. Since the
helicity constraints make the Andreev reflection and normal
transmission directly set the local and nonlocal conductances,
respectively, we conclude that electron transport provides an
excellent and controllable way to detect odd-ω pairs in 2DTI
Josephson junctions.

I. 2DTI JOSEPHSON JUNCTION

We consider a N-SNS-N junction at the edge of a 2DTI
with N being normal-state regions and S being regions in con-
tact with conventional spin-singlet s-wave superconductors,
see Fig. 1(a). For simplicity, we assume a middle N region
of vanishing length and S regions of the same length LS, with
the interfaces located at x = 0, LS, 2LS. This effectively 1D
system is then modeled by the Bogoliubov-de Gennes (BdG)
Hamiltonian,

HBdG = vF pxτzσz − μτz + �(x)τx, (1)

in the basis �(x) = (ψ↑, ψ↓, ψ
†
↓,−ψ

†
↑ )T , where T denotes

the transpose operation and ψ†
σ (x) adds an electron with spin

σ =↑,↓ at position x along the edge. The first term in Eq. (1)
represents the 1D metallic edge of a 2DTI [50,62–65], where
the spin quantization direction is along the z axis, px = −ih̄∂x,
vF is the Fermi velocity of the edge state, and σi (τi) is
the ith Pauli matrix in spin (Nambu) space. Without loss of

generality, we assume h̄ = 1, vF = 1 [64]. Next, μ is the
chemical potential and the last term, �(x), is the induced su-
perconducting order parameter at the edge of the 2DTI, which
is �(x) = 0 in the N regions, �(x) = � in the left S, and
�(x) = �eiφ in the right S. Here, φ is the superconducting
phase and � the order parameter amplitude which introduces
the superconducting coherence length ξ = vF/�. We note
that a finite φ, combined with the 2DTI helicity, enables the
formation of topological ABSs and the emergence of MZMs
at φ = π [50,66]. As we will see, these topological properties
are strongly affecting the behavior of the Josephson junction
studied here.

We are interested in studying the induced Cooper pair
symmetries and their impact on transport across the N-SNS-N
junction in Fig. 1 and modeled by Eq. (1). In the follow-
ing, we first determine the equilibrium transport based on
scattering processes which we then employ to identify the
induced Cooper pair symmetries and their impact on transport
signatures. To highlight the physics, we here discuss the re-
sults and present the detailed calculations in the Supplemental
Material [67].

II. TRANSPORT SIGNATURES

To begin, we identify the microscopic scattering processes
responsible for reflections on one side of the Josephson junc-
tion and transmissions across it, which define the measurable
local and nonlocal conductances of the junction; see Fig. 1.
Due to the 2DTI helicity, normal reflections and crossed
Andreev reflections are forbidden [53,68,69]: a right-moving
electron (hole) from the leftmost N region [blue solid arrow in
Fig. 1(b)] can only be reflected as a hole (electron) at the NS
interface at x = 0. This process, known as local Andreev re-
flection, results in the creation (annihilation) of a Cooper pair
in S and we characterize it by the amplitude reh(he). The right-
moving electron (hole) can also be transmitted, ultimately all
the way to the rightmost N, but only as an electron (hole) [blue
solid arrow in Fig. 1(b)]; a process known as normal transmis-
sion and here characterized by tee(hh). As a consequence, only
the local Andreev reflection reh(he) and normal transmission
tee(hh) determine local and nonlocal conductances, respec-
tively, across the junction. In particular, at zero temperature
the local conductance in the leftmost N region after applying
a bias voltage V > 0 (V < 0) is related to the Andreev re-
flection as σLL = (e2/h)(1 + |reh(he)|2) per spin channel. The
nonlocal conductance, measured in the rightmost N region
for the same bias, is related to normal transmission as σLR =
(e2/h)|tee(hh)|2 per spin channel. In the following, it is suffi-
cient to study reh(he) and tee(hh), which we obtain by matching
the scattering states of the system at all its interfaces [67].

In Figs. 2(a) and 2(c), we plot the total local Andreev
reflection |R|2 = |reh|2 + |rhe|2 and the total transmission
|T |2 = |tee|2 + |thh|2 as a function of frequency ω and phase
difference φ. In Figs. 2(b) and 2(d), we additionally show
|reh|2 and |tee|2 as a function of ω at φ = 0, π . The first
observation is that these scattering processes acquire a strong
phase dependence for |ω| < �. In fact, R and T develop
regions that strongly depend on φ and follow a cosine profile
that reflects the formation of the pair of topological ABSs
at x = LS, known to emerge in 2DTI Josephson junctions
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FIG. 2. Scattering probabilities. (a) Total Andreev reflection
probability |R|2 = |reh|2 + |rhe|2 due to the incidence of an electron
(reh) and a hole (rhe) from the leftmost N region as a function of
ω and φ; black arrows indicate the phase-dependent branches from
reh(he). (b) Andreev probability, |reh|2, as a function of frequency at
φ = 0, π . (c), (d) Same as (a), (b) but for the transmission |T |2 =
|tee|2 + |thh|2 to the rightmost N region. Parameters: μ = �, LS = 2ξ .

[50]. The signature of these ABSs in R and T occurs because
the scattering amplitudes are heavily dependent on the poles
of the scattering matrix, which gives the conditions for the
formation of bound states in a scattering system, see, e.g.,
Refs. [21,70,71]. The key property of topological ABSs is
that, due to the helicity, they develop a zero-frequency cross-
ing at φ = π , which is protected by the conservation of the
total fermion parity and signals the emergence of MZMs.
We further note that even when the middle N region of the
topological Josephson junction in Fig. 1 has a finite length and
hosts additional pairs of ABSs within the gap, the low-energy
results presented here remain unchanged [21,72–74]. This
property can be also seen by noting that each ABS emerges
from a distinct Andreev process, reh and rhe [black arrows
in Fig. 2(a)], which gives rise to a protected zero-frequency
crossing at φ = π [the same holds for |T |2 in (c)]. The fact
that local Andreev reflection and normal transmission capture
the topological ABSs is a remarkable property, as it implies
that they can be easily detected in local and nonlocal con-
ductances. The second observation is that the strong phase
dependence of the total Andreev reflection R and transmission
T reveals a very distinct behavior at φ = π when ω = 0. This
regime is here of particular interest as it is a key property of
topological ABSs [50]. To further understand the very distinct
behavior of R and T in this regime, we derive the analytical
expressions for the Andreev and transmission amplitudes at
ω = 0,

reh(ω = 0) = 1

2i

(1 + e−iφ )sinh(2LS/ξ )

sinh2(LS/ξ )e−iφ + cosh2(LS/ξ )
,

tee(ω = 0) = 1

sinh2(LS/ξ )e−iφ + cosh2(LS/ξ )
, (2)

with rhe(φ) = reh(−φ) and thh(φ) = tee(−φ). At φ = 0, the
Andreev reflection is in fact constant for frequencies |ω| < �,
becoming reh = 1 when 2LS � ξ , while tee instead vanishes in
this regime, see blue curves in Figs. 2(b) and 2(d). In contrast,
at φ = π , the Andreev reflection and transmission develop,
respectively, a dip reaching reh = 0 and a resonant peak tee =
1 at ω = 0, surprisingly, for all LS [75].

The origin of the unusual behavior of the scattering pro-
cesses, expressed both in Fig. 2 and Eqs. (2), is directly
connected to the special structure of the finite topological
Josephson junction under study. First, due to the helical nature
of the 2DTI edge states, the junction hosts a pair of topo-
logical ABSs for any LS [50]. Moreover, owing to the finite
length, 2LS, the system traps discrete levels, which, however,
only emerge for |ω| > � and therefore do not affect transport
within the gap. Thus, the Andreev reflected hole (electron) in
the leftmost N, characterized by reh(he), actually carries all the
information of a full closed cycle within the finite junction,
including transmission across x = LS and Andreev reflection
at x = 2LS. As a consequence, the numerator of reh(he) ac-
quires a (1 + e−iφ ) phase dependence, making it vanish at
φ = π . Moreover, we have verified that in the absence of the
rightmost N region, i.e., when the right S region is instead
semi-infinite, the effect of φ on reh becomes a global com-
plex phase, thus leaving no information about the topological
ABSs in the Andreev probability |reh|2. Hence, the interface
at x = 2LS, which defines the finite length of the S regions,
is absolutely necessary to reveal the formation of topological
ABSs at x = LS in the scattering probabilities and thus also in
the conductance.

To summarize, local and nonlocal conductance measure-
ments, set directly by the local Andreev reflection and normal
transmission, respectively, are enough to detect the forma-
tion of topological ABSs, thus also revealing the presence
of MZMs at φ = π . Since equilibrium transport in supercon-
ducting junctions involves the transfer of Cooper pairs for
subgap frequencies, it is natural to next ask about the sym-
metry of the Cooper pairs that creates these striking transport
features.

III. INDUCED ODD-ω PAIRS

We next investigate the symmetries of the induced Cooper
pairs in the junction by analyzing the superconducting pair
amplitudes. In general, the pair amplitudes are obtained from
the electron-hole (eh) part of the retarded Green’s function Gr

[4,5], which satisfies [ω − HBdG(x)]Gr (x, x′, ω) = δ(x − x′),
where HBdG is a matrix in spin and Nambu spaces given by
Eq. (1). To obtain Gr , we follow the method based on scat-
tering states [15,16,21,76–80], which here involves only local
Andreev reflections and normal transmissions; for details, see
Ref. [67]. To identify the symmetries of the pair amplitude
[Gr (x, x′, ω)]eh, we inspect its dependence on frequency, spin,
and spatial coordinates. The spin symmetry is immediately
evident by writing Gr

eh = ∑
i F r

j σi, with j = 0, · · · , 3. Here,
F r

0 is the spin-singlet (S), while F r
1,2,3 are the equal- ( j = 1, 2)

and mixed-spin ( j = 3) triplet (T) states. Moreover, we are
interested in finding Cooper pair signatures in transport ob-
servables measured locally at the interfaces x = 0, 2LS. We
also know from the previous section that transport is governed
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FIG. 3. (a)–(d) Absolute value of the local ESE and OTE pair
amplitudes inside the topological Josephson junction as a function of
ω at φ = 0, π for x = 0 (a), (b) and x = LS (c), (d). Parameters same
as Fig. 2: μ = �, LS = 2ξ .

by the topological ABSs that locally reside at x = LS. It is
therefore most interesting to focus on the local pairs at these
interfaces, i.e., those that are finite for x = x′, which means
only considering even-parity (E) spatial symmetry. Hence,
taking into account that the Cooper pair amplitudes must be
overall antisymmetric due to Fermi-Dirac statistics, we reduce
all the possible symmetries to just two local pair symmetries:
even-ω spin-singlet even-parity (ESE) and odd-ω spin-triplet
even-parity (OTE) [81]. Below we discuss the emergence of
these two local pair symmetries in the junction of Fig. 1(a),
with details presented in Ref. [67].

Under general conditions, we find finite local pair ampli-
tudes with ESE (OTE) symmetry in all regions of the junction,
denoted here as F r,E(O), respectively. While the ESE symme-
try is in the spin-singlet state of the parent superconductor, the
OTE symmetry is in the mixed spin-triplet state and emerges
due to the strong spin-momentum locking in 2DTI edges
[14,21,71,82,83]. The existence of these two pair symmetries
in both the N and S regions is determined by the scattering
processes at the junction interfaces, which also introduce a
strong dependence on the superconducting phase difference
φ. At the outer interfaces (x = 0, 2LS), ESE and OTE pairs
are simultaneously determined by the same local Andreev
reflection, making it essentially impossible to distinguish be-
tween these two types of Cooper pairs. This effect is seen in
Figs. 3(a) and 3(b), which depict the frequency dependence of
ESE and OTE amplitudes at x = 0 for φ = 0 and π , respec-
tively. While at φ = 0 both ESE and OTE pairs are finite and
constant for |ω| < �, at φ = π both amplitudes develop a dip
and vanish at ω = 0.

In the middle of the junction, at x = LS, the situation is
interestingly distinct to what occurs at the outer interfaces, as
seen in Figs. 3(c) and 3(d). At φ = 0 and x = LS, the ESE

term is always finite and also captures the gap edge coherence
peaks, while the OTE component completely vanishes. Inter-
estingly, at φ = π and x = LS, the ESE part instead vanishes
for all ω, while the OTE term is finite for all ω and even
exhibits a resonant profile at ω = 0, thus becoming both large
and the only type of superconducting pairing. The resonant
OTE profile results from the protected crossing of the topo-
logical ABSs at zero frequency and also reflects the dynamical
symmetry of this superconducting state. Indeed, we find that
the pair amplitudes at x = LS are fully determined by the scat-
tering processes, which include the ABSs through the zeros of
the denominator of the scattering matrix [21,70,71]. We have
thus identified that, while under general circumstances Cooper
pairs with both ESE and OTE symmetries coexist, only pairs
with OTE symmetry remain in the middle of the junction at
φ = π and ω = 0 [84].

Having established the emergence and dominant behav-
ior of OTE Cooper pairs at φ = π , we finally address their
connection to the transport observables discussed in the pre-
vious section. Since electron transport at subgap frequencies
involves only the transfer of Cooper pairs, the signatures in
the Andreev reflection and transmission necessarily corre-
spond to the dominant OTE Cooper pair symmetry. This is
also supported by the fact that the origin of the dominant
OTE symmetry, the topological ABSs, is the same as that
of the dip and resonant profile in the local Andreev and
transmission probabilities at zero frequency, see Figs. 2(b)
and 2(d), respectively. As a consequence, a clear signature
of OTE Cooper pairs is measuring at φ = π either a dip
in the local conductance, related to Andreev reflection, or
a peak of the nonlocal conductance, determined by normal
transmissions. Due to the topological protection of the zero-
energy ABS at φ = π , our results remain valid also for longer
N regions. In fact, for any N region shorter than the su-
perconducting coherence length, no other states appear in
the N region which can modify the results [21,72–74]. We
have further verified that our results remain overall robust
even for longer N regions and also for S regions of distinct
lengths [67].

In conclusion, we have identified the impact of Cooper
pair symmetries in transport observables in a N-SNS-N topo-
logical Josephson junction at the edge of a 2D topological
insulator. In particular, we have found vanishing local An-
dreev reflection and perfect normal transmission at φ = π and
ω = 0 as a result of the interplay between the finite junction
size and the emergence of a pair of topological ABSs. Further-
more, we have discovered that the Cooper pairs responsible
for this surprising transport behavior only have odd-frequency
mixed spin-triplet symmetry in the middle of the junction. We
note that very similar short Josephson junctions at the edge
of 2D topological insulators as proposed here have already
been fabricated with good proximity-induced superconduc-
tivity in, e.g., HgCd/HgTe and InAs/GaSb [56–59,85]. In
these systems, there is also evidence of having achieved
phase tuning to φ = π through the measurement of the
4π fractional Josephson effect [57–59]. Moreover, conduc-
tance measurements have also been performed in these
systems [55,56,58,85]. Taken together, these recent results
place our proposal clearly within experimental reach. Our
work thus paves the way for highly controllable detection
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schemes of odd-frequency pairing in topological Josephson
junctions.
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