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Hund’s pairing refers to Cooper pairing generated by onsite interactions that become attractive due to large
Hund’s exchange J . This is possible in multiorbital systems even when all local bare interactions are repulsive,
since attractions in specific channels are given by certain linear combinations of interaction parameters. On the
other hand, pairing processes such as the exchange of spin fluctuations are also present. We compare mean-field
Hund’s pairing and spin-fluctuation-mediated pairing using electronic bands appropriate for different classes
of multiorbital systems over a wide range of interaction parameters. We find that, for systems without clear
nesting features, the superconducting state generated by the Hund’s mechanism agrees well with that from the
full fluctuation exchange vertex when Hund’s exchange and spin-orbit coupling are sufficiently large. On the
other hand, for systems characterized by a peaked finite-momentum particle-hole susceptibility, spin-fluctuation
pairing generally dominates over Hund’s pairing. From this perspective Hund’s pairing states appear unlikely to
be realized in systems like Sr2RuO4 and generic iron-based superconductors.
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I. INTRODUCTION

The problem of creating superconductivity in systems
where local interactions are repulsive dates back to Kohn and
Luttinger, who studied how the screened Coulomb interaction
can give rise to effective attraction in higher angular momen-
tum channels in the electron gas [1]. Electrons binding in such
pair states can avoid the Coulomb energy cost largely without
the need of retardation in time, since the pair wave function
has a node at the origin. In the electron gas, as in single-band
lattice systems like the Hubbard model, the bare interaction
itself cannot pair directly. Instead, one needs to calculate the
effective interaction, i.e., sum screening processes leading to
Friedel oscillations that allow for attraction in certain chan-
nels [1–8].

By contrast, many unconventional superconductors of cur-
rent interest involve electrons in multiple bands at the Fermi
level, subject to strong local Coulomb repulsion [9]. This
situation is described by a Hubbard-Kanamori Hamiltonian,
with Hund’s exchange J , inter-orbital Coulomb interaction U ′,
and pair hopping term J ′ in addition to the usual intraorbital
Hubbard U . In this model, the attraction binding electrons
into Cooper pairs can arise in different ways. First, it can
be generated as in the one-band case by summing the pair
scattering processes. In the iron-based superconductors, mag-
netic fluctuations connecting the Fermi surface pockets in the
Brillouin zone (BZ) are thought to be exchanged, leading to
dominant spin-singlet sign-changing s±- or d-wave conden-
sates [10–12].

In recent years, a qualitatively different route to pair for-
mation in multiorbital models with local repulsive interactions

has been explored by a number of authors [13–26]. Projecting
onto appropriate symmetry channels, the interaction param-
eters U,U ′, J, J ′ appear in certain combinations that may
be negative and lead to direct attraction. For example, for
certain iron-based systems, an interorbital spin-triplet state is
stabilized by an interaction channel proportional to U ′ − J ,
providing attraction when J exceeds U ′ [23] and spin-orbit
coupling (SOC) is present to generate a Cooper logarithm
at the instability [16,23]. We refer to pairing of this type as
“Hund’s pairing” since it requires a large Hund’s exchange
J . It has been suggested to produce exotic pair states in
uranium-based superconductors [14–16], iron-based super-
conductors [22–24], and Sr2RuO4 [16–20].

Even if Hund’s pairing states are stable, they still
“compete” with more usual spin-fluctuation-driven pairing
states [27]. Until now, no one has compared the two types
of pairing on an equal footing. This is important because,
although SOC creates a logarithmic instability, the corre-
sponding Tc may be very low because of the small weight of
intra-band pairing present at the Fermi surface. One expects
that for sufficiently large J and SOC such states will indeed
be stable, but can Hund’s pairing outcompete spin-fluctuation
driven pairing, or will the latter states remain favorable also
at large J/U? And how might this depend on the underlying
band structure? It is vital that the discussion regarding these
candidate states in systems of current interest proceed with
accurate estimates of their true viability.

In this work, we compare the superconducting order ob-
tained from the two different pairing mechanisms: local
Hund’s pairing at the mean-field level vs spin-fluctuation
mediated pairing. The comparative study is performed for
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two very different multiorbital systems: (1) a two-orbital
model forming two �-centered Fermi pockets [23], and (2)
a three-orbital model relevant for Sr2RuO4 [28,29]. In both
procedures, we determine the gap structure and Tc while ex-
ploring different interaction regimes, varying U , J/U , and
the value of SOC λso. As is well-known, Hund’s pairing at
the mean-field level is only operative in the regime, J >

U ′ [18,23]. This criterion can be renormalized by higher-order
processes [16,30], effectively expanding the “Hund’s regime.”
We find that, inside this regime, pairing driven by Hund’s
coupling agrees almost quantitatively with spin-fluctuation
pairing when the electronic structure generates a susceptibil-
ity with weak momentum structure. By contrast, when the
susceptibility contains sufficient momentum structure, spin-
fluctuation processes generally dominate the pairing, also in
the Hund’s regime. We analyze this limit in detail and explain
why Hund’s pairing and spin-fluctuation pairing can lead to
both qualitatively and quantitatively different superconduct-
ing solutions.

II. METHOD

Before applying specific band structures, we describe the
methodology applied as pairing kernel for both mechanisms
in question. The starting point is the multiorbital interaction

Ĥint = 1

2

∑
k,k′{μ̃}

[V (k, k′)]μ̃i,μ̃l
μ̃ j ,μ̃k

c†
kμ̃i

c†
−kμ̃ j

c−k′μ̃l ck′μ̃k , (1)

where ckμ̃ annihilates an electron with momentum k, and μ̃ =
(μ, σ ) is a joint index of orbital and electronic spin.

We refer to Hund’s pairing when onsite interactions di-
rectly mediate superconductivity. Thus, for Hund’s pairing
the effective interaction of Eq. (1) is given simply by
[V (k, k′)]μ̃i,μ̃l

μ̃ j ,μ̃k
= [U ]μ̃i,μ̃l

μ̃ j ,μ̃k
which contain intra- (U ) and in-

terorbital Coulomb scattering (U ′) as well as pair-hopping
terms (J, J ′) with the spin rotational invariant setting U ′ =
U − 2J , J ′ = J; for details see the Supplemental Material
(SM) [31]. We require throughout that U ′ � 0, i.e., J/U �
1
2 . Attractive pairing emerges when J > U ′ (equivalently
J/U > 1

3 ) at the mean-field level, which was recently shown
to generate unusual orbital-singlet, spin-triplet gap struc-
tures [16,18,20,23].

Within spin-fluctuation mediated pairing, an effective in-
teraction is derived from random phase approximation (RPA)
diagrams [9,32,33]. The pairing obtained in this framework is
given by

[V (k, k′)]μ̃i,μ̃l
μ̃ j ,μ̃k

= [U ]μ̃i,μ̃l
μ̃ j ,μ̃k

+
[
U

1

1 − χ0U
χ0U

]μ̃i,μ̃l

μ̃ j ,μ̃k

(k + k′)

−
[
U

1

1 − χ0U
χ0U

]μ̃i,μ̃k

μ̃ j ,μ̃l

(k − k′), (2)

and includes, in addition to the same local interactions as the
Hund’s pairing scenario, explicit momentum-dependent effec-
tive interactions through the bare susceptibility χ0(q); see SM
for details [31]. Below we compare the two mechanisms by

solving (i) the resulting BCS gap equation

[�k]μ̃i
μ̃ j

=
∑

k′,μ̃k,μ̃l

[V (k, k′)]μ̃i,μ̃l
μ̃ j ,μ̃k

〈c−k′μ̃l ck′μ̃k 〉 (3)

for different bands and interaction parameters, and (ii) analyz-
ing the linearized gap equation (LGE) projected to band and
spin space [29,31–33] to visualize the gap function �l (k f ) on
the Fermi surface and discuss leading and subleading instabil-
ities according to the eigenvalue λ.

III. RESULTS

A. Non-nested band structure

First, we discuss a multiorbital case with a simple band
structure without nesting using the two-orbital model of
Ref. [23],

H0(k) =
(

μ − ak2 + bkxky c
(
k2

x − k2
y

) − iσλso

c
(
k2

x − k2
y

) + iσλso μ − ak2 − bkxky

)
(4)

in the basis [ck,xz,σ , ck,yz,σ ] with the energy unit a = 1/2m.
The Fermi surface and the momentum structure of the bare
static susceptibility χ zz

0 (q) is shown in Figs. 1(a) and 1(b),
respectively. At low values of J/U < 1

3 , the rather featureless
susceptibility supports only weak (spin-fluctuation generated)
superconductivity, as seen by the red curve in Fig. 1(c). The
favored nature of the superconductivity in this regime is he-
lical odd-parity pairing. By contrast, in the Hund’s regime
where J/U > 1

3 , the regime of main interest in this paper,
Hund’s pairing becomes active and overwhelms the helical so-
lution, producing an interorbital spin-triplet even-parity state
with an s-wave gap structure (in band space); see Fig. 1(d). As
displayed in Fig. 1(c), spin fluctuations and Hund’s pairing
agree well in this case, because the onsite direct attrac-
tion dominates over the weak momentum-dependent parts of
Eq. (2). Further details and parameter dependence are dis-
cussed in the SM [31]. Figure 1(e) shows the importance
of nonzero λso within Hund’s pairing, yielding vanishing
eigenvalue for λso → 0. Finally, Fig. 1(f) displays the T de-
pendence of the pairing channels in orbital and spin space
from Hund’s pairing corresponding to the components given
in Table I. The dominant A1g channel 1

2 ([�]xz↓
yz↑ + [�]xz↑

yz↓ ) can
be written as

(U ′ − J )
∑

k′
(〈c−k′yz↓ck′xz↑〉 + 〈c−k′yz↑ck′xz↓〉), (5)

highlighting its orbital-singlet, spin-triplet structure, in agree-
ment with earlier works [23,25]. In summary, non-nested
multiorbital band structures generally exhibit agreement be-
tween the pairing strengths and gap structures obtained by
Hund’s pairing and spin-fluctuation pairing for J/U > 1

3 .
However, for J/U < 1

3 only the latter method enables super-
conductivity.

B. Nested band structure

Next, we turn to a different band representative of cases
that do exhibit some nesting. We are not concerned with
rare perfectly nested bands, but rather with bands exhibiting

L100501-2



SUPERCONDUCTIVITY IN MULTIORBITAL SYSTEMS … PHYSICAL REVIEW B 106, L100501 (2022)

FIG. 1. (a) Fermi surface of the two-orbital model (4), with
parameters a = 1, b = c = λso = 0.5, μ = 1.5. The main orbital
content is shown by the color code. (b) Momentum dependence of
the static spin susceptibility χ zz

0 (q). (c) Leading eigenvalue of the
LGE as a function of J/U for U/a = 1. Results from spin-fluctuation
pairing (Hund’s pairing) are indicated by solid lines (diamonds). The
light blue region indicates the regime of attractive onsite Hund’s
pairing, J/U > 1

3 . (d) Superconducting gap structure (in band space)
obtained at U/a = 1, J/U = 0.5, representative of all leading even-
parity solutions when J/U > 1

3 . (e) Eigenvalue from the LGE as a
function of λso for different J/U for Hund’s pairing. (f) Orbital and
spin structure (see Table I) from the Hund’s pairing mechanism vs
T for U/a = 6, J/U = 0.5, showcasing the dominant spin-triplet,
orbital-singlet pairing channel (green curve) in the Hund’s regime.

a degree of approximate finite-momentum nesting as typ-
ically occurs in many unconventional superconductors. As
a concrete, timely example, we apply a band relevant for

TABLE I. Relevant combinations of order parameter compo-
nents for the two-orbital model shown in Fig. 1 transforming as
irreducible representations (IRs) of the point group D4h; see also
SM [31]. Orbital and spin structure are indicated by their singlet (S)
or triplet (T) character.

Channel Orbital Spin IR

1
2 ([�]xz↓

yz↑ + [�]xz↑
yz↓ ) S T A1g

1
2 ([�]xz↑

xz↓ + [�]yz↑
yz↓) T S A1g

Sr2RuO4[28,29]. The normal state Hamiltonian is

H0(k) =

⎛
⎜⎝

ξxz(k) −iσλso/2 iλso/2

iσλso/2 ξyz(k) −σλso/2

−iλso/2 −σλso/2 ξxy(k)

⎞
⎟⎠, (6)

in the pseudospin basis [ck,xz,σ , ck,yz,σ , ck,xy,σ ]. The dispersion
relations are ξxz/yz(k) = −2t1/2 cos kx − 2t2/1 cos ky − μ

and ξxy(k) = −2t3(cos kx + cos ky) − 4t4 cos kx cos ky −
2t5(cos 2kx + cos 2ky) − μ with (t1, t2, t3, t4, t5, μ) =
(88, 9, 80, 40, 5, 109) meV and atomic SOC λsoL · S,
λso = 20 meV. Band parameters were chosen in ranges
appropriate for Sr2RuO4 [28,29]. The Fermi surface is shown
in Fig. 2(a), and the associated spin susceptibility with
well-defined nesting peaks is displayed in Fig. 2(b). As is
evident from the blue lines in Fig. 2(c), spin-fluctuation
pairing generates leading even-parity nodal s′ (A1g) or dx2−y2

(B1g) gap structures throughout the entire J/U range. By s′
we refer to the fact that the gap structure is nodal s wave.
A subleading odd-parity helical solution (red line) is also
depicted in Fig. 2(c). In the large-J region, Hund’s pairing
with significantly smaller eigenvalues sets in, as seen by
the diamond symbols in Fig. 2(c). The critical temperatures
in this regime scale as Tc ∝ e−1/λ showing a dominance of
spin-fluctuation mediated pairing, originating from important
contributions from the fluctuation terms in the pairing
kernel, Eq. (2). More details and examination of parameter
dependence are given in the SM [31]

To obtain a detailed understanding of the differences be-
tween the gap structures from the two mechanisms, we turn
to self-consistent solutions of the full gap equation in orbital
and spin space decomposed into the appropriate irreducible
representations (IRs) [34–36]. See Table II for the relevant
components, and SM for the full list [31]. Focusing on the
results from spin-fluctuation pairing, Figs. 2(d)–2(f) show the
T dependence of the nonzero orbital channels at the large ra-
tios J/U = 0.3, J/U = 0.35, and J/U = 0.4 [37]. Figure 2(d)
reveals a dominant orbital-triplet, spin-singlet A1g structure of
the nodal s′ solution (red curve) generated from spin fluc-
tuations at J/U = 0.3 [29]. Inside the (mean-field) Hund’s
regime, i.e., for J/U = 0.35, the orbital-singlet spin-triplet
(green curve) channel is substantial, but has not yet surpassed
the orbital-triplet spin-singlet channel (red curve). As seen
from the insets in Fig. 2(e), the final T = 0 gap structure is of
the s′ + idx2−y2 form. This composite time-reversal symmetry
broken state is expected from the LGE solutions [Fig. 2(c)]
revealing that the s′ and dx2−y2 channels are nearly degenerate
at this J/U . At even larger J/U , as seen from Fig. 2(f), spin-
fluctuations favor the orbital-singlet, spin-triplet gap structure
and the gap in band space becomes nodeless with sign changes
between the different Fermi sheets. The solution of the gap
equation within Hund’s pairing is substantially simpler: the
orbital structure valid throughout the regime 1

3 < J/U < 1
2

is shown in Fig. 2(g) with the associated momentum gap
structure displayed in the inset. In the Hund’s mechanism,
the orbital-singlet, spin-triplet A1g channel involving interor-
bital pairing between xy and xz/yz orbitals dominates the
pairing, as seen from Fig. 2(g). By comparing Figs. 2(f)
and 2(g) it is evident that the gap structures generated by the
two distinct mechanisms become similar when J/U 	 1

2 . Our
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FIG. 2. (a) Fermi surface of the three-orbital model of Eq. (6). Majority orbital content is indicated by the color code. (b) Momentum
dependence of the bare static susceptibility χ zz

0 (q). (c) Eigenvalues of leading and subleading solutions to the LGE, as a function of J/U
for U = 100 meV. Spin-fluctuation (Hund’s) mediated pairing is shown by lines (symbols). The shaded blue region indicates the regime
of attractive Hund’s pairing, J/U > 1

3 . (d)–(f) Orbital- and spin-structure components of the pairing gap versus T as obtained from spin-
fluctuation pairing (U = 110 meV) for J/U = 0.3 (d), J/U = 0.35 (e), and J/U = 0.4 (f). See Table II for the detailed definition and color
code of each channel. The insets in (d)–(g) display the gap structures on the Fermi surface. In (e) the insets represent real (top, s′) and imaginary
(bottom, dx2−y2 ) parts of the leading s′ + id gap function at T = 0. (g) Orbital and spin structure of the gap as obtained from Hund’s pairing with
J/U = 0.5. Note the much smaller gap scale (and Tc) compared to (f), despite larger J/U in (g). (h) Onsite triplet-pairing component [V (0)]xz↑

xy↑
[driving the green curves in (d)–(g)] vs J/U for spin fluctuations (green line) and Hund’s pairing (blue line), revealing an enhancement of
onsite attractions by spin fluctuations.

self-consistent solutions confirm, however, that even in this
regime of U and J the Tc’s of the Hund’s pairing mechanism
are substantially lower than those from spin fluctuations, in
agreement with Fig. 2(c) [41].

The extent of the nominal Hund’s pairing regime can be
renormalized by higher-order scattering processes [16]. We
demonstrate this explicitly in Fig. 2(h), displaying the J/U
dependence of the dominant onsite pairing channel for (1)
mean-field Hund’s pairing given by U

2 (1 − 3J
U ), and (2) the

onsite part of the spin-fluctuation pairing, V (r = 0). For the

latter case, to second order in interactions the pairing between
xz and xy-orbitals for same-spin electrons is proportional to

V (2)(r = 0) 	 (U ′ − J ) − UU ′ ∑
q

[
χ xz

0 (q) + χ
xy
0 (q)

]

− (U ′)2
∑

q

χ
yz
0 (q) − (U ′ − J )2

∑
q

χ
yz
0 (q),

(7)

TABLE II. Same as Table I for the three-orbital model Eq. (6). We include the form factors (FF) for each channel, obtained from the
projection of the gap into the different basis functions with f±(k) = cos 2kx ± cos 2ky.

Channel FF Orbital Spin IR

1
2
√

3
([�]xz↑

xz↓ + [�]yz↑
yz↓ − 2[�]xy↑

xy↓) f+(k) T S A1g

1
4 (i[�]xz↓

xy↓ − i[�]xz↑
xy↑ − [�]yz↑

xy↑ − [�]yz↓
xy↓) f+(k) S T A1g

1
3 ([�]xz↑

xz↓ + [�]yz↑
yz↓ + [�]xy↑

xy↓) f−(k) T S B1g

1
4 (i[�]xz↓

xy↓ − i[�]xz↑
xy↑ + [�]yz↑

xy↑ + [�]yz↓
xy↓) 1 S T B1g

1
4 (i[�]xz↓

xy↓ − i[�]xz↑
xy↑ − [�]yz↑

xy↑ − [�]yz↓
xy↓) 1 S T A1g

1
3 ([�]xz↑

xz↓ + [�]yz↑
yz↓ + [�]xy↑

xy↓) 1 T S A1g
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where we have included for simplicity only the dominant
intraorbital susceptibilities; see SM [31]. This demonstrates
that spin fluctuations can induce onsite attraction in the
regime J/U < 1

3 , where the bare interaction is repulsive. Im-
portantly, however, this onsite channel is still substantially
weaker than (nonlocal) channels driven by spin-fluctuation
finite-momentum pair scattering processes, as is evident from
Fig. 2(c)–2(e) [42].

IV. DISCUSSION AND CONCLUSIONS

Interorbital pair states are candidates for the supercon-
ducting ground state of many materials [13–26]. We have
discussed the stability of such states within two different,
widely used methods for superconducting pairing. For non-
nested band structures with finite SOC, onsite Hund’s pairing
at the mean-field level agrees well with spin-fluctuation
mediated pairing in the large-J region. By contrast, for
correlated materials with bands exhibiting some degree of
finite-momentum nesting, pronounced susceptibility contri-
butions remain important, from small J up to and including

inside much of the large-J Hund’s regime, and can lead
to qualitatively different gap structures as seen, e.g., from
comparing Figs. 2(e) and 2(g). This is relevant even though
fluctuations enhance the Hund’s regime for purely local pair-
ing. We have discussed the latter findings for a band structure
relevant for Sr2RuO4, but the results are expected to remain
valid for generic bands with some degree of finite-momentum
nesting including, e.g., iron-based superconductors. Our cal-
culations therefore serve as a cautionary note against the
indiscriminate application of the Hund’s pairing approach and
suggest that, in most unconventional superconductors of cur-
rent interest, orbital-singlet, spin-triplet states of this type are
not realized.
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