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We study the Kitaev spin ladder with random couplings by using the real-space strong-disorder renormaliza-
tion group (SDRG) technique. This model is the minimum model in Kitaev systems that has conserved plaquette
fluxes, and its quasi-one-dimensional geometry makes it possible to study the strong-disorder fixed points for
both spin- and flux-excitation gaps. In the Ising limit where the x-type Ising couplings compete with the z-type
couplings and the y-type couplings are small but nonzero, the behavior of the spin gap is consistent with a
random transverse-field Ising chain, but the flux gap is dominated by the y-type couplings. In the XX limit,
while the x- and y-type couplings are locally equal and renormalized simultaneously, the z-type couplings are
not renormalized drastically and lead to nonuniversal disorder criticality at low-energy scales. We show that
different types of fractionalized degrees of freedom in the disordered Kitaev model can result in different critical
behaviors, as long as its fluxes can survive the perturbative treatment.
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Introduction. Quantum spin liquid (QSL), an exotic mag-
netic phase with fractionalized spin excitations and intricate
entanglement structure, has been pursued both theoretically
and experimentally since its first proposal by Anderson
in 1973 [1]. Theoretical models and candidate materials
with strong geometrical or exchange frustration are expected
to greatly reduce the ordering temperature and reveal the
quantum fluctuations. However, the presence of residual in-
teractions in real systems usually leads to magnetic ordering
and shatters the hope of finding QSL. Nevertheless, various
compounds were discovered with no magnetic ordering, even
down to the lowest measurable temperature, and commonly
the quenched randomness was found to serve as a potential
cause of the sustaining disordered phase and intriguing dy-
namics of low-energy degrees of freedom [2–6]. Therefore
the competition between quantum fluctuations and random-
ness raises a critical question about the true nature of the
low-energy phase in those materials. For example, the pecu-
liar low-energy excitations found in the second generation of
Kitaev materials [7–9] may be ascribable to spin fractionaliza-
tion in weakly disordered QSL [10–12], but it may also relate
to the random-singlet (RS) phase in strongly disordered mag-
nets [13]. The RS phase was first proposed in the studies of the
random spin chains by a real-space perturbation scheme called
the strong-disorder renormalization group (SDRG) [14–16].
This method has been shown to be asymptotically exact if the
random distribution broadens infinitely through the iteration,
and the ground-state wave function of the RS is a product
state of singlets with a variety of distances. In this regard,
the RS phase is not a QSL, despite having quantum critical
features.

Even though the strong-disorder phenomenology for Ki-
taev systems has been discussed in different scenarios [13,17],
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the direct application of SDRG is still lacking and the fate of
flux degrees of freedom under disorder remains an open ques-
tion. Previous studies of SDRG on two-dimensional models
have shown that the connectivity on each site grows drastically
in the iteration [18–21], and thus it is presumed that any
properties derived from elementary plaquettes of the lattice,
such as geometrical frustration and plaquette fluxes, will be
destroyed by the local perturbation schemes such as SDRG.

In this Letter we study a quasi-one-dimensional Kitaev
spin ladder with plaquette fluxes. There exists a dual transfor-
mation of this model [22], which transforms it into a chain
Hamiltonian with (dual) spins and fluxes preserved by the
local perturbative treatment. Thus the random Kitaev spin
ladder provides a fruitful playground to study the SDRG flow
of both the (dual) spin- and flux-excitation energies and the
corresponding disorder criticalities. Our numerical SDRG re-
sults show that the spin- and flux-gap energy scale can either
be a universal function following the SDRG fixed-point dis-
tribution, or a nonuniversal one affected by the initial random
distributions. Here we present our main findings and defer
full technical details of the extended SDRG methodology to
a forthcoming publication [23].

Strong-disorder renormalization group. The main idea
of SDRG is to successively decimate out the larger-energy
(shorter-time) degrees of freedom in real space and scrutinize
the flow of random distributions throughout the iteration. The
low-energy physics, phase transitions, and corresponding crit-
ical exponents can be extracted from the fixed-point solutions.
Moreover, for simple one-dimensional models such as random
Heisenberg chain and random transverse-field Ising chain
(RTIC), the analytical solution of the RG flow equation can
be obtained even in the off-critical Griffiths region away from
infinite-disorder fixed point (IDFP) [24]. In more complicated
models, numerical SDRG was applied extensively in order to
extract the low-energy physics governed by strong-disorder
fluctuations. Comprehensive reviews of SDRG can be found
in Refs. [21,25].
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FIG. 1. (a) Kitaev spin ladder derived from one row of the hon-
eycomb lattice. The shaded plaquette denotes the conserved flux
operator W2 = −σ

y
3 σ x

4 σ x
5 σ

y
6 . (b) The lowest flux-excitation gap for

the pure Kitaev honeycomb model and two-leg ladder. The white
solid (dashed) line denotes the XX limit (Ising limit) of the model
considered in this work. In the Ising limit, the small but nonzero Jy is
required in order to have finite flux gaps.

Model. We consider a spin-1/2 two-leg Kitaev spin ladder
with alternating x and y Ising couplings on the legs and z
couplings on the rungs as in Fig. 1(a). The sites are labeled
as a one-dimensional chain with third-neighbor x couplings:

H = −
N/2∑

l=1

[
Jxσ

x
2l−1σ

x
2l+2 + Jyσ

y
2lσ

y
2l+1 + Jzσ

z
2l−1σ

z
2l

]
. (1)

This can be seen as a minimum model reduced from the
Kitaev honeycomb model [26] that still has conserved flux
operators Wl = −σ

y
2l−1σ

x
2lσ

x
2l+1σ

y
2l+2 on each plaquette. We

apply the duality transformation [22]

σ z
j =

N∏

k= j

τ z
k , σ

y
j = τ

y
j−1τ

y
j , (2)

such that the effective Hamiltonian (excluding the boundary
terms) becomes a transverse-field XY dual-spin chain:

H = −
L∑

j

[
JxWjτ

x
j τ

x
j+1 + Jyτ

y
j τ

y
j+1 + Jzτ

z
j

]
. (3)

Note that we relabel the indices since the couplings and
fields are present only on odd sites (2l − 1) such that the
length of the chain is L = N/2. In addition, the operators of
even sites (2l) form a set of local conserved quantities Wl =
τ

y
2l−2τ

z
2lτ

y
2l+2 with eigenvalues ±1. In fact, this is precisely the

plaquette flux operator of the original spin model. In this dual
Hamiltonian, the fluxes are present explicitly so that we can

separate flux sectors by different sets of W eigenvalues. Ac-
cording to Lieb’s theorem [27], the ground-state sector of the
pure Kitaev ladder is in the π -flux phase where all W = −1.
With open boundary conditions, the flux can be singly excited
from −1 to +1. The lowest flux excitation energy is plotted in
Fig. 1(b), and it resembles the flux-gap phase diagram of the
Kitaev honeycomb model [28].

Note that in Eq. (3), the original spin operators σi are
transformed into the dual-spin operators τi and flux operators
Wi. This is similar to the Majorana representation of the Ki-
taev honeycomb model, where spin can fractionalize into the
Majorana fermions and flux gauge fields. Therefore we can
define two types of the lowest excitation energy in our model:
the spin gap refers to the first dual-spin excitation of a given
flux sector, and the flux gap refers to the ground-state energy
difference between an arbitrary flux sector and the π -flux sec-
tor. We note that the spin gap in the dual model is not the same
as a spin gap in the original model of Eq. (1). In the random
model, all the couplings and fields are quenched disordered
and given by arbitrary random distributions R(Jx ), Q(Jy), and
P(Jz ).

XX limit. In this limit, the x and y couplings on the same
bond are equal Jx, j = Jy, j ≡ Jj and thus only two independent
distributions R(J ) and P(Jz ) are considered. In the bond-
decimation scheme [Fig. 2(a), lower panel], we derive the RG
rule from the four-site example with the largest energy scale
� = J2 and treat the rest of the terms as perturbation. The two
spins in the middle are then frozen in their local ground state
with a large decimation gap 2�, similar to the formation of a
random singlet in the random Heisenberg chain. Spins on site
1 and 4 then form a renormalized coupling with a new flux
variable:

J̃ = J1J3

�
, W̃ = W1W2W3. (4)

With W2 = ±1, Jz,2 and Jz,3 will contribute to the different
constant energy shifts in the perturbation theory [29], and this
gives rise to the flux gap

�E f (W2) = Jz,2Jz,3

�
. (5)

In the site decimation scheme, we consider a three-site
example with � = Jz,2 [Fig. 2(b)]. The strongest field tends
to align the spin on site 2, and renormalized couplings are
formed between site 1 and site 3 as J̃ = J1J2/� with W̃ =
W1W2. However, in site decimation the neighboring transverse
fields are also modified and become flux dependent:

J̃z,1 = Jz,1 − J2
1

�
W1, J̃z,3 = Jz,3 − J2

2

�
W2. (6)

In later decimation steps, if J̃z,1 or J̃z,3 happen to be the new
� of the system, this flux-dependent term will become the
flux gap for W1 or W2. One important observation from the
decimation rules is that the couplings are renormalized much
faster than the fields, such that the site decimation becomes
dominant in the low-energy limit [23]. Numerically, we im-
plemented SDRG in a similar way to the studies of random
Heisenberg chain and RTIC for the spins and additionally
calculate the local flux gaps from Eqs. (5) and (6) for each
decimation step, if applicable (see details in Ref. [29]).
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FIG. 2. Decimation rules for the Kitaev spin ladder in the Ising and XX limits. (a) Ising limit (upper panel): The x-bond decimation with
the largest energy scale � = Jx,2. The upper doublet formed by site 2 and site 3 is integrated out, and the lower doublet forms an effective
spin-1/2 site A with renormalized couplings and an on-site effective field. XX limit (lower panel): x and y couplings on the same bond are
equal, Jx, j = Jy, j ≡ Jj , so that they are simultaneously decimated with the largest energy scale � = J2. Spins on sites 2 and 3 form a local
ground state with a large decimation gap 2�, and spins on sites 1 and 4 are coupled by a renormalized interaction with a new flux variable.
(b) The site decimation with the largest energy scale � = Jz,2. Site 2 is aligned by the transverse field, and the neighboring sites are coupled
by the renormalized couplings.

Ising limit. In this limit we consider the scale of Jy to
be much smaller than Jx and Jz, such that x-bond and site
decimations are dominant in SDRG. Therefore the fixed-point
solution of RTIC can be applied for Jx and Jz. Even though Jy

is considered to be very small, it is required to be finite in
order to have nonzero flux excitation energies. In the bond-
decimation scheme (� = Jx,2), the strongest Ising coupling
leads to a low-energy doublet which is kept as a renormalized
spin, as shown in the upper panel of Fig. 2(a). The low-
energy effective Hamiltonian can be rigorously derived via
the Schrieffer-Wolff transformation [30–32], and the effective
transverse field on this renormalized spin is (see details of the
derivation in Ref. [29])

J̃z,A = Jy,2W2 − Jz,2Jz,3

�
. (7)

The site decimation rule is derived from the three-site example
and is similar to that in the XX limit.

Since the decimation rules in the Ising limit are more
complicated than in the XX limit, we executed the SDRG
calculations on the π -flux sector and all the one-flux excita-
tion sectors for each random realization. The flux gaps are
then computed from the energy difference between different
sectors, instead of being estimated from the decimation rules.
The validity of the method is verified by comparing the small-
sized results in exact diagonalization [23].

In the numerical SDRG calculation, we consider different
phases according to the initial uniform distributions of the
couplings with different widths:

Jx ∈ [0,�x], Jy ∈ [0,�y], Jz ∈ [0,�z]. (8)

For the critical phase we set g = �z/�x = 1, and for the
off-critical (Griffiths) phase we take g = 1/4 or 4. In all cases
we set �y to be much smaller such that y-bond decimation
happens rarely. In Fig. 3 we show the distributions of spin
and flux gaps from all the one-flux excitation sectors. Note

FIG. 3. Distribution of (dual) spin and fluxes gaps of different
phases for various small �y in the Ising limit. (a) The spin-gap
distribution for π -flux sector and one-flux excitation sectors. The
distributions of the first excitation gap are shown for the disordered
(g = 4) and critical phase (g = 1), and the second gap is chosen
for the ordered phase (g = 1/4). (b) Distribution of the one-flux
excitation gaps. The inset shows that the �y dependence can be
removed by dividing �y for each gap. All data are obtained from the
numerical SDRG with 105 random samples of the L = 128 chain.
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FIG. 4. Extreme-value statistics on the (dual) spin and flux gaps. The black solid lines in (a), (c), and (d) represent the fitting of the Fréchet
distribution [Eq. (9)]. For the fitting curve of IDFP with ψ = 1/2 in (b), the approximate form in Ref. [33] is used. All data are obtained from
the numerical SDRG of 105 − 106 random samples with various system sizes.

that in the disordered (g = 4) and critical (g = 1) phases we
collect the first spin gap, while in the ordered (g = 1/4) phase
we use the second spin gap, due to the fact that the first spin
gap corresponds to the finite-size effect of degenerate ground
states in the ordered phase [29,34,35]. For the spin gaps,
the ordered and disordered phases have identical distribution
because of the duality with respect to the critical point. Also,
as shown in Fig. 3(a), the spin-gap distributions are almost
unchanged by tuning the width �y. However, in the flux-gap
distributions shown in Fig. 3(b), a clear shift is observed for
different �y in all three phases. This suggests that while the
spin gaps are functions of Jx and Jz and almost independent
of Jy values, the flux gaps in general have a linear dependence
on Jy.

Extreme-value statistics. We first consider the Ising-limit
result. Based on the analytical solution of RTIC [36,37], in the
disordered phase the extreme-value statistics of the minimum
spin gap follow the Fréchet distribution with u = u0�EsLz:

P(ln u) = 1

z
u1/z exp(−u1/z ), (9)

where the dynamical exponent z is determined [24,38] by
the equation z ln(1 − z−2) = − ln g, and with g = 4 we obtain
z ≈ 1.211. In Fig. 4(a), the finite-size scaling of our numerical
SDRG result shows that both spin and flux gaps follow the
analytical form, indicating the fixed-point behavior.

At the critical point of RTIC, the minimum-gap distribu-
tion has a rather complicated form [37] but the finite-size
scaling can be done by noting that − ln �E ∼ L1/2 from
the infinite-disorder fixed-point solution. Our results show
that the minimum-spin-gap distributions perfectly match this
scaling law [Fig. 4(b), left panel], but the minimum-flux-gap
distributions of different sizes cannot collapse in the same
way [Fig. 4(b), inset of the right panel]. This suggests the
nonuniversal behavior for the flux gaps at the critical point,
which can be understood as follows.

In the critical case (g = 1), bond decimation is equally
important as the site decimation. However, the former may
lead to a flux gap with Jy,i from Eq. (7). Thus the local flux
gap for W2 can have the general expression

�E f (W2) = 2Jy,2 + renormalized terms . . . , (10)

such that the leading term is determined by the initial distribu-
tion of Jy. This explains why in Fig. 3 it has linear dependence
of �y, but in Fig. 4(b) a nonuniversal size scaling is observed.
To verify this, we show that the nonuniversal behavior in
extreme-value statistics on flux gaps can be removed by defin-
ing �Ẽ f (Wi) ≡ �E f (Wi)/Jy,i. The resulting curves [Fig. 4(b),
right panel] are indeed scaled as the infinite-disorder fixed-
point solution.

In the XX limit, with the dominant site decimation at
low energies at and away from g = 1, the extreme-value
statistics of the spin gaps simply gives the Fréchet distri-
bution for uniform distributions, as shown on the left panel
of Figs. 4(c) and 4(d) [39]. On the other hand, the flux-
gap distributions show a trend of broadening similar to the
IDFP but with a different exponent ψ = 1. Even in the case
of power-law initial distributions, this scaling behavior re-
mains robust [23]. The above results demonstrate again that
different strong-disorder criticalities can happen for the flux
excitations.

Conclusion. In the pursuit of the quantum spin liquid
phase in real materials, it was argued that disorder-induced
random-singlet phase is responsible for the observed power-
law divergence in magnetic specific heat and susceptibility
[13]. In this work we applied the SDRG scheme to the random
Kitaev spin ladder model and showed that strong-disorder
criticality appears not only for the spins but also for the local
conserved quantities. Even though other types of interaction
may present in real systems, the validity of our approach relies
on that Kitaev coupling remains the largest energy scale in
each step of SDRG iteration. We showed that the flux degrees
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of freedom in this model can be preserved by the duality
transformation and thus survive the local perturbation theory
of SDRG. We also showed that the fluxes may reveal different
criticalities compared to the (dual) spin degrees of freedom.
Moreover, we found that the power-law exponent of the flux-
gap distribution depends on the type of initial distribution of
couplings. This points out a new complexity in understanding
the strong-disorder effect in frustrated spin systems and is
worth further theoretical inquiries. Finally, we remark that
the importance of the Griffiths-like effect is pointed out in
a recent paper for understanding the nonuniversal power-law
exponents of Majorana excitations in the disordered Kitaev

model with static fluxes [40]. Our work is a complementary
study, since the extended SDRG can also reveal the disorder
criticality of fluxes. Since the flux-gap energy scale is usually
far below the (dual) spin gaps, we anticipate that the transition
between different power laws can potentially be seen in the
low-temperature specific heat of the disordered Kitaev candi-
date materials [7].

Acknowledgments. We thank Yu-Ping Lin, Eduardo Mi-
randa, and Chi-Yun Lin for fruitful discussions. W.-H.K. and
N.B.P. acknowledge support from NSF DMR-1929311 and
the support of the Minnesota Supercomputing Institute (MSI)
at the University of Minnesota.

[1] P. W. Anderson, Mater. Res. Bull. 8, 153 (1973).
[2] D. E. Freedman, T. H. Han, A. Prodi, P. Müller, Q.-Z. Huang,

Y.-S. Chen, S. M. Webb, Y. S. Lee, T. M. McQueen, and D. G.
Nocera, J. Am. Chem. Soc. 132, 16185 (2010).

[3] K. Riedl, R. Valentí, and S. M. Winter, Nat. Commun. 10, 2561
(2019).

[4] H. Yamaguchi, M. Okada, Y. Kono, S. Kittaka, T. Sakakibara,
T. Okabe, Y. Iwasaki, and Y. Hosokoshi, Sci. Rep. 7, 16144
(2017).

[5] H. Murayama, Y. Sato, T. Taniguchi, R. Kurihara, X. Z. Xing,
W. Huang, S. Kasahara, Y. Kasahara, I. Kimchi, M. Yoshida, Y.
Iwasa, Y. Mizukami, T. Shibauchi, M. Konczykowski, and Y.
Matsuda, Phys. Rev. Research 2, 013099 (2020).

[6] S.-H. Do, C.H. Lee, T. Kihara, Y.S. Choi, S. Yoon, K. Kim, H.
Cheong, W.-T. Chen, F. Chou, H. Nojiri, and K.-Y. Choi, Phys.
Rev. Lett. 124, 047204 (2020).

[7] K. Kitagawa, T. Takayama, Y. Matsumoto, A. Kato, R. Takano,
Y. Kishimoto, S. Bette, R. Dinnebier, G. Jackeli, and H. Takagi,
Nature (London) 554, 341 (2018).

[8] S. Trebst and C. Hickey, Phys. Rep. 950, 1 (2022).
[9] F. Bahrami, M. Abramchuk, O. Lebedev, and F. Tafti,

Molecules 27, 871 (2022).
[10] J. Knolle, R. Moessner, and N. B. Perkins, Phys. Rev. Lett. 122,

047202 (2019).
[11] W.-H. Kao, J. Knolle, G. B. Halász, R. Moessner, and N. B.

Perkins, Phys. Rev. X 11, 011034 (2021).
[12] W.-H. Kao and N. B. Perkins, Ann. Phys. 435, 168506 (2021).
[13] I. Kimchi, J. P. Sheckelton, T. M. McQueen, and P. A. Lee, Nat.

Commun. 9, 4367 (2018).
[14] S.-K. Ma, C. Dasgupta, and C.-K. Hu, Phys. Rev. Lett. 43, 1434

(1979).
[15] C. Dasgupta and S.-K. Ma, Phys. Rev. B 22, 1305 (1980).
[16] D. S. Fisher, Phys. Rev. B 50, 3799 (1994).
[17] S. Sanyal, K. Damle, J. T. Chalker, and R. Moessner, Phys. Rev.

Lett. 127, 127201 (2021).
[18] O. Motrunich, S.-C. Mau, D. A. Huse, and D. S. Fisher, Phys.

Rev. B 61, 1160 (2000).

[19] Y.-C. Lin, R. Mélin, H. Rieger, and F. Iglói, Phys. Rev. B 68,
024424 (2003).

[20] I. A. Kovács and F. Iglói, Phys. Rev. B 82, 054437 (2010).
[21] I. A. Kovács and F. Iglói, J. Phys.: Condens. Matter 23, 404204

(2011).
[22] X.-Y. Feng, G.-M. Zhang, and T. Xiang, Phys. Rev. Lett. 98,

087204 (2007).
[23] W.-H. Kao and N. B. Perkins (unpublished).
[24] F. Iglói, Phys. Rev. B 65, 064416 (2002).
[25] F. Iglói and C. Monthus, Eur. Phys. J. B 91, 290 (2018).
[26] A. Kitaev, Ann. Phys. 321, 2 (2006).
[27] E. H. Lieb, Phys. Rev. Lett. 73, 2158 (1994).
[28] Y. Motome and J. Nasu, J. Phys. Soc. Jpn. 89, 012002 (2020).
[29] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.106.L100402 for the derivations of SDRG
decimation rules and the technical details of numerical SDRG.

[30] J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).
[31] R. Vosk and E. Altman, Phys. Rev. Lett. 112, 217204 (2014).
[32] D. Pekker, G. Refael, E. Altman, E. Demler, and V. Oganesyan,

Phys. Rev. X 4, 011052 (2014).
[33] Y.-P. Lin, Y.-J. Kao, P. Chen, and Y.-C. Lin, Phys. Rev. B 96,

064427 (2017).
[34] F. Iglói and C. Monthus, Phys. Rep. 412, 277 (2005).
[35] R. Juhász, Y.-C. Lin, and F. Iglói, Phys. Rev. B 73, 224206

(2006).
[36] D. S. Fisher, Phys. Rev. Lett. 69, 534 (1992).
[37] D. S. Fisher and A. P. Young, Phys. Rev. B 58, 9131 (1998).
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