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Respecting deformational constraints and predeformations poses a substantial challenge in the description of
nonlinear elasticity. We here outline how group theory can play a beneficial role to overcome this challenge.
Specifically, group theory guides us to generalized definitions of nonlinear shear deformation gradients and
expressions of generalized elastic moduli in the nonlinear regime. Particularly, such achievements become
important in the context of larger deformations under constraints and additional deformations on top of pre-
deformations.
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Finite deformations of solid materials require quantifi-
cation in terms of nonlinear elasticity [1–3]. Ubiquitous
examples of elastic materials that are commonly exposed to
significant strains include, but are not limited to, strained-
layer semiconductor heterostructures [4,5], metallic alloys [6]
including gum metals [7,8], two-dimensional materials [9], in
particular, monolayer graphene [10,11] (for its composites,
see, e.g., Ref. [12]), and carbon nanotubes [13,14]. From
a theoretical perspective, while ab initio calculations with
the aid of density functional theory and molecular dynamics
simulations are among the most frequently employed numer-
ical approaches [13,15,16], the Eulerian or Lagrangian strain
tensors offer a continuum mechanical framework [16–18] to
address the nonlinear elastic behaviors of solids. Frequently,
such systems are addressed or applied under maintained
deformational constraints or prestrains [19–23]. Then, the
considered reference state no longer corresponds to the natural
relaxed configuration.

To characterize the stress-strain relation for small super-
imposed deviations in strain from the current state of the
material, it is imperative to determine the corresponding elas-
tic moduli. In a quantitative description, one is then tempted
to simply superimpose linearized forms of strain or deforma-
tion tensors [24,25] to the already deformed state. However,
even in the limit of infinitesimal superimposed strains, such
linearizations in terms of linear elasticity theory imply in-
consistencies. Basic examples are included below. The reason
hides in the overall finite degree of deformation that changes
under the additional strain, which is not fully resolved by
superimposing linearized infinitesimal strains. Thus, we need
to identify a formulation of the problem that consistently
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describes small-amplitude deformations in combination with
nonlinear elasticity theory.

This conception naturally takes us to group theory. At its
core, we find the linking of infinitesimal and finite elements.
More precisely, finite elements are constructed (“generated”)
from infinitesimal elements (“generators”) [26–28]. As we
demonstrate and illustrate, a consistent nonlinear elasticity
theory can be formulated accordingly that naturally incor-
porates evaluations in constrained and predeformed states.
Appropriate expressions for elastic moduli in such situations
are derived.

We start with an intuitive illustration in two dimensions.
For simplicity, we confine ourselves to spatially homogeneous
deformations. So-called hyperelastic materials are addressed,
the stress-strain relation of which derives from a strain energy
density function W (F) [29]. Here, F represents the defor-
mation gradient tensor. If r and r′(r) denote the positions
of the material elements before and during deformation, re-
spectively, then F = ∂r′/∂r. As an example, we consider a
predeformation in the form of isotropic compression or dila-
tion of amplitude a,

F0 =
(

a 0
0 a

)
, (1)

0 < a < ∞. Maintaining this predeformed state can be re-
garded as a constraint. We refer to the neo-Hookean energy
density [3]

W (F) = μ

2
[Tr (FT · F) − 2] − μ ln J + λ

2
(ln J )2, (2)

where J =
√

det(FT · F), μ and λ are the elastic Lamé co-
efficients, while superscript T and the center dot · indicate
transpose and matrix multiplication, respectively.

If we now wish to superimpose to this predeformation a
rotation by a small rotation angle ε, one is tempted to use the
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linearized form [25,30,31]

Finf
rot =

(
1 −ε

ε 1

)
. (3)

However, we recognize that this form is insufficient under the
predeformation. Particularly, it leads for a �= 1 to an energy
difference �W (Finf

rot ) = W (Finf
rot · F0) − W (F0),

�W (Finf
rot ) = [μ(a2 − 1) + λ(ln a2)]ε2 �= 0. (4)

This contradicts the actual �W = 0, which is expected for
pure rigid rotations in isotropic space. We note that the prob-
lem is solved by using instead the actual rotation matrix to
nonlinear order in ε,

Frot =
(

cos ε − sin ε

sin ε cos ε

)
. (5)

Then correctly �W (Frot ) = W (Frot · F0) − W (F0) = 0.
Here, rectification was straightforward, because the nonlin-

ear expression of the rotation matrix is widely known. Yet, in
general, how can we find the correct nonlinear expression for
the deformation gradient tensors? Obviously, this is necessary
to obtain the correct result in nonlinear elasticity theory under
predeformations or other external constraints.

We find that group theory provides an answer. In two
dimensions, deformation gradients are represented as 2×2
invertible matrices. Their determinants are all equal to unity,
if we keep the above constraint of preserved volume while the
predeformation F0 is maintained. The deformation gradient
tensors of strain and rotation are elements of the special linear
group SL(2,R), with regular matrix multiplication and matrix
inversion as group operations. The corresponding infinitesi-
mal generators are written as

κ1 =
(

0 −1
1 0

)
, κ2 =

(
0 1
1 0

)
, κ3 =

(
1 0
0 −1

)
. (6)

We notice that the rotation matrix Frot in Eq. (5) can
be obtained systematically from the generator κ1 as Frot =
exp(εκ1). Its action for a quadratic example system is illus-
trated in Fig. 1(a). To linear order in ε, we obtain Finf

rot in
Eq. (3).

This insight guides the way to generate further deformation
gradient tensors involving the other generators. For instance,
κ2 is associated with shear. Ad hoc, we might formulate a
corresponding linearized deformation gradient tensor as

Finf
shear =

(
1 ε

ε 1

)
, (7)

which indeed is useful in the absence of predeformations.
However, if this deformation is superimposed to the prede-
formation F0, the energy difference �W (Finf

shear ) = W (Finf
shear ·

F0) − W (F0) is found as

�W
(
Finf

shear

) = [μ(a2 + 1) − λ(ln a2)]ε2. (8)

This expression can even become negative for a �= 1, which
would indicate energetically unstable situations, together with
negative shear moduli.

(a) (b)

(c) (d)

FIG. 1. Geometric representation of (a) rotation, (b) and (c) shear
deformations, and (d) dilation. Displacement fields (green arrows),
undeformed (black dashed lines), and deformed (red solid lines)
example systems are shown. Black dots indicate the origin. Energet-
ically, the shear deformations in (b) and (c) are identical for isotropic
systems.

To find the correct nonlinear expression Fshear, in analogy
to Frot = exp(εκ1), we generate it from κ2 as

Fshear = exp (εκ2) =
(

cosh ε sinh ε

sinh ε cosh ε

)
. (9)

Indeed, we then obtain �W (Fshear ) = W (Fshear · F0) −
W (F0) = 2μa2ε2 � 0. The associated shear deformation is
depicted in Fig. 1(b), while κ3 generates a shear deformation
of different orientation [see Fig. 1(c)]. If volume changes
are permitted, another generator κ0 = I, denoting the unit
matrix, needs to be added. From there, F0 in Eq. (1) can be
generated [see Fig. 1(d)]. Obviously, under constraints and
finite predeformations, superimposed deformation gradients
need to be considered to nonlinear order. Frequently, in
nonlinear theories, such constraints are handled with the
aid of the method of Lagrange multipliers [1,32,33]. Yet,
this introduces additional parameters and equations. In
Hamiltonian mechanics for particles, constraints can be
eliminated from the theory by introducing generalized
coordinates [34]. However, this affords us to first identify
an appropriate set of generalized coordinates. Using group
theory, we here introduce a systematic way to handle
nonlinear, finite elastic deformations, possibly subject to
deformational constraints.

Importantly, because of the constraints, the space of de-
formation gradient tensors F is not Euclidean but a manifold.
More precisely, elasticity theory becomes based on manifolds
of the general linear group GL(d,R), i.e., F ∈ GL(d,R),
where d denotes the dimension. Our approach is based on Lie
algebra.

We now extend the above considerations to three dimen-
sions. The Lie algebra gl(3,R) of the group GL(3,R) is the
set of all 3×3 matrices, together with a Lie bracket operation,
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here the commutation relation [λi,λ j] ≡ λi · λ j − λ j · λi. By
the set {λi} we denote the three-dimensional generators, here
selected as [35]

λ0 =
√

2

3
I, (10)

which generates compressions or dilations, and

λ1 =
⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, λ2 = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠,

λ3 =
⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠, λ4 =

⎛
⎝0 0 −1

0 0 0
1 0 0

⎞
⎠,

λ5 =
⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠, λ6 =

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠,

λ7 =
⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠, λ8 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠. (11)

The latter eight traceless matrices form a basis for the special
linear Lie algebra sl(3,R) [36]. Specifically, λ1 generates
stretches or compressions along the x axis with compres-
sions or stretches along the y axis, respectively; λ2 generates
stretches or compressions along the x and y axes with com-
pressions or stretches of twice the magnitude along the z
axis, respectively; λ3, λ4, and λ5 generate rotations in the xy,
xz, and yz plane, respectively; λ6, λ7, and λ8 generate shear
deformations in the xy, xz, and yz plane, respectively. λ1 can
also be regarded to generate a shear deformation in the xy
plane as λ6, but with different orientation.

Using the exponential map [26,28], we can now generate
finite deformation gradient tensors Fε from {λi},

Fε ≡ exp

(
8∑

i=0

εiλi

)
≡ exp �, (12)

if the matrix logarithm of Fε exists. This is the case around
Fε = I, i.e., for a set {εi} of finite but small coefficients.
Otherwise, we may obtain the deformation gradients from
matrix multiplications of exponential maps [28], i.e., F =
e�1 · e�2 · · · · . Exploiting the fact that generators provide
linearly independent elements, a finite deformation may be
decomposed into components. For instance, based on Lie
algebra, one can consider Fε = exp (ε0λ0 + ε3λ3 + ε6λ6) as a
superposition of a dilation (or compression) with the strength
of ε0, and a rotation and a shear deformation in the xy plane
with strengths ε3 and ε6, respectively, which is distinguished
from conventional decompositions in terms of deformation
gradient tensors. Indeed, direct decompositions of deforma-
tion gradient tensors in the form of Fε = F1 · F2 (see, e.g.,
Ref. [37]) are not allowed in general, as generators mostly
do not commute. Rather than that, a deformation should be
divided into many pieces of infinitesimal deformations due to
the Lie product formula [28].

Using the generators, our next step is to derive appropriate
expressions for the elastic moduli and rotation coefficients for
a system in a constrained or predeformed state. We introduce

a vector notation ε ≡ (ε0, . . . , ε8)T and under a finite prede-
formation F0 expand W in terms of {εi} as

W (Fε · F0) = W0 + s T · ε + 1

2
ε T · C · ε, (13)

where W0 = W (F0) and for i, j ∈ {0, . . . , 8} we have

si = ∂W

∂εi
and Ci j = ∂2W

∂εi∂ε j
. (14)

The vector s, conjugate to ε, quantifies the stress under a
constraint or predeformation.

Generally, a carefully selected basis may support the de-
scription of the problem. For instance, fixing the volume in
the predeformed state can simply be achieved by omitting the
component ε0. Linear algebra allows us to adjust the basis
to the problem at hand. Specifically, unitary operators U that
connect two different bases via ε̃ = U · ε imply

W = W0 + s̃ T · ε̃ + 1
2 ε̃ T · C̃ · ε̃, (15)

where s̃ = U · s and C̃ = U · C · U T .
In what follows, we investigate the roles that s and C

play in the context of appropriate elastic moduli for nonlinear
elasticity theory. We use Einstein’s summation convention and
denote as σ the Cauchy stress tensor, which is given by

σ = 1

J

∂W

∂F
· FT , (16)

for hyperelastic materials. From Eq. (14), we find in coordi-
nates associated with the deformed state [1]

si = ∂W

∂[Fε]ab

[
∂Fε

∂εi

]
ab

= J[σ]ab

[
∂Fε

∂εi
· F−1

ε

]
ba

. (17)

Since we are working with matrix Lie groups, we may insert
the expression [27,28]

∂Fε

∂εi
= Fε ·

∫ 1

0
ds Ade−s� (λi ), (18)

where � = ∑
i εiλi, AdeX (Y)= eadX (Y), and adX(Y) = [X, Y].

Particularly, Eq. (17) connects the newly defined first-order
coefficients {si} and the Cauchy stress tensor. For example,
we obtain

s0 =
√

2

3
J Tr σ ≡ −

√
6J p (19)

because [λ0,�] = 0 and consequently ∂Fε/∂ε0 = Fε · λ0,
while p denotes the generalized pressure.

Analogously, we obtain for the second-order coefficients,
which we now call generalized elastic moduli,

Ci j = [A]abcd

[
∂Fε

∂εi

]
cd

[
∂Fε

∂ε j

]
ab

+ J[σ]ab

[
∂2Fε

∂εi∂ε j
· F−1

ε

]
ba

.

(20)

Here, A represents the fourth-rank tensor of classic elastic
moduli with components

[A]abcd ≡ ∂2W

∂[Fε]cd ∂[Fε]ab

∣∣∣∣
ε→0

. (21)

They completely determine C in the absence of any prede-
formation, i.e., for σ = 0. In this case, the form of A, and
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subsequently of C is fully determined by irreducible represen-
tations in linear elasticity (see, e.g., Ref. [38]). Otherwise, the
second-order derivatives are calculated via [27,28]

∂2Fε

∂εi∂ε j
=Fε ·

∫ 1

0
ds

[∫ 1

s
dt[Ade−t� (λ j )][Ade−s� (λi )]

+
∫ s

0
dt[Ade−s� (λi )][Ade−t� (λ j )]

]
. (22)

We note that our expression for Ci j in Eq. (20) corresponds
to a type of tangent moduli [39] quantifying elastic moduli
in predeformed states, but automatically satisfies imposed
constraints if an appropriate set of generators is chosen.
Remarkably, the newly derived corrections due to imposed
predeformations given by the second term in Eq. (20), to-
gether with A associated with the ground-state symmetry,
provide irreducible representations of nonlinear elastic moduli
extended to general states of systems.

For simplicity, we henceforth confine ourselves to infinites-
imal volume-preserving deformations with J = 1. Then, from
Eqs. (12) and (17) we find

si = [σ]ab[λi]ba. (23)

For unconstrained systems, the Cauchy stress tensor σun can
be decomposed into the one for incompressible systems σ and
an s0 term as σun = σ + s0I/

√
6 = σ − pI [see Eq. (19)], in

line with the method of Lagrange multipliers [1]. Moreover,
the generalized elastic moduli in Eq. (20) via Eq. (22) reduce

to

Ci j = [A]abcd [λi]cd [λ j]ab + 1
2 [σ]ab[{λi,λ j}]ba. (24)

In this expression, {λi,λ j} = λi · λ j + λ j · λi denote the anti-
commutation relations. It is straightforward to calculate them
from Eqs. (10) and (11). They can be rewritten in the form
{λi,λ j} = gi jI + ∑8

k=1 hi jkλk , where gi j and hi jk represent the
so-called structure constants for the associated Lie algebra,
here gl(3,R), that can be calculated explicitly. Thus we obtain
from Eqs. (19), (23), and (24),

Ci j = [A]abcd [λi]cd [λ j]ab + 1

2

(√
3

2
gi js0 +

8∑
k=1

hi jksk

)
.

(25)

The first contribution, in terms of the matrix components for
i, j = 1, . . . , 8, related to both prestressed and nonprestressed
systems, takes the form

√
2

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s0 0 0 0 0 0 0 0
0 s0 0 0 0 0 0 0
0 0 −s0 0 0 0 0 0
0 0 0 −s0 0 0 0 0
0 0 0 0 −s0 0 0 0
0 0 0 0 0 s0 0 0
0 0 0 0 0 0 s0 0
0 0 0 0 0 0 0 s0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (26)

The square root appears because of the definition of λ0 in
Eq. (10) that indicates the square root as a prefactor. The
second contribution in Eq. (25), which needs to be taken into
account in the case of prestressed systems, reads

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
3
s2

1√
3
s1 0 1

2 s4 − 1
2 s5 0 1

2 s7 − 1
2 s8

1√
3
s1 − 1√

3
s2

1√
3
s3 − 1

2
√

3
s4 − 1

2
√

3
s5

1√
3
s6 − 1

2
√

3
s7 − 1

2
√

3
s8

0 1√
3
s3 − 1√

3
s2 − 1

2 s8
1
2 s7 0 − 1

2 s5
1
2 s4

1
2 s4 − 1

2
√

3
s4 − 1

2 s8 − 1
2 s1 + 1

2
√

3
s2 − 1

2 s6
1
2 s5 0 1

2 s3

− 1
2 s5 − 1

2
√

3
s5

1
2 s7 − 1

2 s6
1
2 s1 + 1

2
√

3
s2

1
2 s4 − 1

2 s3 0

0 1√
3
s6 0 1

2 s5
1
2 s4

1√
3
s2

1
2 s8

1
2 s7

1
2 s7 − 1

2
√

3
s7 − 1

2 s5 0 − 1
2 s3

1
2 s8

1
2 s1 − 1

2
√

3
s2

1
2 s6

− 1
2 s8 − 1

2
√

3
s8

1
2 s4

1
2 s3 0 1

2 s7
1
2 s6 − 1

2 s1 − 1
2
√

3
s2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (27)

Together, Eqs. (25)–(27) conclude our derivation of the gen-
eralized elastic moduli Ci j . They follow in a systematic way
using group theory. Beyond the pure classic elastic moduli
associated with A [see Eq. (21)], Eq. (25) contains the contri-
butions through the predeformation via the Cauchy stresses σ
[see Eqs. (19) and (23)]. The tensor A still refers to all modes
of deformation, including the ones that actually are restricted
by the imposed constraints. Our formalism consistently in-
cludes the consequences of these constraints into the overall
expression for the generalized elastic moduli C. Moreover, as
a strong benefit, the factors s can be directly read off from
an expansion of the deformation energy in a suitable basis
ε adjusted to the constraints [see Eqs. (13) and (15)]. For
situations of completely constrained volume, the contributions
by s0 and λ0 may simply be dropped.

For a brief illustration of our formalism, we return to
Eq. (2) in two dimensions and supplement it as [40,41]

W (F) = μ

2
[Tr(FT · F) − 2] − μ ln J + λ

2
(ln J )2

− 1

2

(
Hn̂H · F · n̂s

|F · n̂s|
)2

. (28)

The last term includes the orientation of an internal axis n̂s

that is reoriented by F and coupled to an external field Hn̂H .
Together with the predeformation in Eq. (1), we consider F =
Fε · F0 = aFε , while imposing for Fε a constraint of preserved
volume.
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(a) (b)

FIG. 2. Geometric representation of simple shears in analogy to
the illustration in Fig. 1.

A second set of generators,

κ̃1 =
(

0
√

2
0 0

)
, κ̃2 =

(
0 0√
2 0

)
, κ̃3 = κ3, (29)

is used besides Eq. (6), where κ̃1 and κ̃2 generate frequently
considered simple shears [25] [see Figs. 2(a) and 2(b), respec-
tively]. The unitary matrix

U =
⎛
⎝−1/

√
2 1/

√
2 0

1/
√

2 1/
√

2 0
0 0 1

⎞
⎠ (30)

connects the two sets of generators and resulting quantities
to each other, as detailed around Eq. (15). In this way, using
our formalism, we readily find the results associated with the
types of deformation depicted in Fig. 2 as well. Evaluating the
analog of Eq. (12) in our two-dimensional setting, we find

� =
(

ε3 −ε1 + ε2

ε1 + ε2 −ε3

)
=

(
ε̃3

√
2ε̃1√

2ε̃2 −ε̃3

)
. (31)

Together with

Fε = cosh Cε I + 1

Cε

sinh Cε �, (32)

Cε =
√

�2
11 + �12�21, this allows us to evaluate Eq. (28).

Noting that J = a2 and setting n̂H = (0, 1)T and n̂s =
(0, 1)T , we obtain from Eq. (28) up to second order in {εi}
and {ε̃i}, respectively,

W ({εi}) ≈ μ(a2 − 1 − ln a2) + λ

2
(ln a2)2 − H2

2

+ 2μa2
(
ε2

2 + ε2
3

) + H2

2

(
ε2

1 + ε2
2 − 2ε1ε2

)
(33)

and

W ({ε̃i}) ≈ μ(a2 − 1 − ln a2) + λ

2
(ln a2)2 − H2

2

+μa2
(
ε̃2

1 + ε̃2
2 + 2ε̃1ε̃2 + 2ε̃2

3

) + H2ε̃2
1 . (34)

On the one hand, a comparison with Eqs. (13) and (15)
allows us to directly read off si = 0 = s̃i (i = 1, 2, 3) together
with the generalized moduli

C11 = H2, C22 = 4μa2 + H2, C33 = 4μa2,

C12 = C21 = −H2, (35)

and

C̃11 = 2μa2 + 2H2, C̃22 = 2μa2, C̃33 = 4μa2,

C̃12 = C̃21 = 2μa2. (36)

In this way, the linear transformation rules below Eq. (15) can
directly be verified using Eq. (30). Consequently, this example
demonstrates how results for different sets of generators of
deformation can readily be obtained from each other.

On the other hand, we may now determine the generalized
elastic moduli Ci j from our theory using the two-dimensional
analogs of Eqs. (24) and (25). Specifically, from explicit
calculation for the associated Lie algebra gl(2,R) with the
generators κ0 ≡ I and {κi} for i = 1, 2, 3 given by Eq. (6), we
obtain

1

2
[σ]ab[{κi, κ j}]ba =

⎛
⎝−s0 0 0

0 s0 0
0 0 s0

⎞
⎠

i j

. (37)

For this purpose, we additionally need to calculate s0. As a
two-dimensional analog of Eq. (19), together with the gener-
ator κ0 = I, we obtain

s0 = Tr σ = 2[μ(a2 − 1) + λ ln a2] ≡ − 2p. (38)

Thus, we find in two dimensions

C11 = [A]1212 + [A]2121 − 2[A]1221 − s0

≡ B1212 + 2p, (39)

C22 = [A]1212 + [A]2121 + 2[A]1221 + s0

≡ C1212 − 2p, (40)

C33 = [A]1111 + [A]2222 − 2[A]1122 + s0, (41)

C12 = C21 = −[A]1212 + [A]2121. (42)

The newly defined rotation coefficient B1212 is linked to
rotations generated from κ1 [see Fig. 1(a)]. Likewise, the shear
modulus C1212 is linked to shear deformations generated from
κ2 [see Fig. 1(b)]. They are now directly obtained in an eco-
nomic way from Eqs. (39) and (40) via Eqs. (35) and (38). The
explicit components of A are not needed to this end. Yet, they
can be calculated from an expansion of W (F) in components
of Fε and using Eq. (21) to confirm our expressions.

To summarize our results and illustration, group theory has
guided us to an appropriate formulation of nonlinear elasticity
under imposed constraints and finite predeformations. Our de-
formation gradient tensors are constructed consistently from
generators, which identifies appropriate expressions. Addi-
tional distortions superimposed to finite predeformations,
even regarding certain constraints, are in this way described
consistently, with consequences even in the infinitesimal limit.
Using unitary transformations, the framework is adjusted to
the type of deformation at hand. In the limit of infinitesi-
mal superimposed distortions, our theory provides appropriate
expressions of generalized elastic moduli and rotation coeffi-
cients.

In addition to our theoretical advance, it is important to
discuss possible applications of the formulation to real sys-
tems. Obviously, our approach should prove (technically)
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useful in any situation where materials under predeformations
or constraints are exposed to external or internal stimuli.
It will also be illuminating to extend our description to
corresponding dynamic scenarios as well as to nonaffine de-
formations in combination with computational evaluations.
Moreover, in addition to conventional solids, various soft
and living matters [32,42–45] can be modeled as nonlinear
elastic materials. For example, nematic gels and elastomers
[42,46] can be investigated by our formalism, for which
an extension to systems of anisotropic elasticity should be
envisaged.

Beyond the technical advance, our approach may open an-
other avenue to investigate nontypical solids. Since the stress
vector has been defined as a conjugate to deformation, our
group theoretical approach should be useful to characterize

active systems [47,48], in which (active) forces instead of
deformations are directly expressed by the system. While
we have discussed our formulation in the context of con-
tinuum theory, it is straightforward to extend our approach
to particle-based models and discretized systems. Since an
implementation of constraints in this case is not as obvious
as in continuum models due to fluctuations, our formulation
might be relevant for molecular dynamics and Monte Carlo
simulations [49,50] under constraints and predeformations.
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