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Predicting magnetic edge behavior in graphene using neural networks
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Magnetic moments near zigzag edges in graphene allow complex nanostructures with customized spin proper-
ties to be realized. However, computational costs restrict theoretical investigations to small or perfectly periodic
structures. Here, we demonstrate that a machine-learning approach, using only geometric input, can accurately
estimate magnetic moment profiles, allowing arbitrarily large and disordered systems to be quickly simulated.
Excellent agreement is found with mean-field Hubbard calculations, and important electronic, magnetic, and
transport properties are reproduced using the estimated profiles. This approach allows the magnetic moments
of experimental-scale systems to be quickly and accurately predicted, and will speed up the identification of
promising geometries for spintronic applications. While machine-learning approaches to many-body interactions
have largely been limited to exact solutions of complex models at very small scales, this Letter establishes that
they can be successfully applied at very large scales at mean-field levels of accuracy.
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Graphene systems with zigzag (ZZ) edge segments can
exhibit magnetic polarization at half filling [1-4]. A ZZ
edge hosts a localized state at the Fermi energy [5], which
is spin split by electron-electron interactions [2,6]. The re-
sultant magnetic moments decay away from the edge and
display an antiferromagnetic (AFM) texture with respect to
the sublattice, with different sublattice edges displaying op-
posite polarizations [1,2,7-9]. Local moment formation and
long spin-diffusion lengths together suggest graphene as a
promising spintronic material [10], and many device propos-
als are predicated on ZZ-edge magnetism [2,11-17]. Zigzag
graphene nanoribbons (ZGNRs) host spin-polarized transport
channels near their edges, which can be further harnessed
using electric fields [2] or geometry effects [11,18,19] to in-
duce half-metallic behavior and spin-filtering functionalities.
Finite dot structures allow a greater number of edges and more
complex behavior [13,20-23]. For example, flakes with a sub-
lattice imbalance can have a net magnetization [7]. Similar
behavior is predicted for subtractive antidot systems [24-26],
where ZZ-edged perforations underpin half-metallic [27] and
anisotropic transport [28].

Magnetic moments decay away from, and vary along, ZZ
edges. Maxima are found at the center of extended ZZ sec-
tions, with smaller values towards the bulk and near junctions
or corners [4,20,21]. While fabrication methods can create
edges with preferential orientations [29-35], most experi-
mental systems contain a mix of different edge lengths and
types [36-39]. The coupling between states at these edges
can lead to complex magnetic profiles, as demonstrated in
Fig. 1. Until recently [40], direct experimental evidence of
local magnetism had proven elusive, and most studies rely
on indirect scanning tunneling signatures [33,35,41]. These
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depend sensitively on the system geometry, and measurements
are usually compared to theoretical calculations to verify the
presence of magnetism. Moment profiles can be simulated
using spin-polarized density functional theory (DFT) if the
system is periodic or very small. Larger systems can be con-
sidered using a tight-binding (TB) approach with a mean-field
Hubbard term. However, this scales poorly due to repeated
diagonalization of large matrices in the self-consistent (SC)
procedure, curtailing efforts to investigate large or disordered
systems.

In this Letter, we propose a machine-learning (ML) ap-
proach to estimate moment profiles entirely from geometric
considerations. We develop a simple descriptor which cap-
tures the location of a site relative to nearby edges of various
types, and which also encodes the important sublattice texture
of such systems (Fig. 1). We demonstrate that neural networks
can quickly and accurately estimate local moments using this
descriptor, removing a significant computational bottleneck
to investigating magnetic graphene systems. Our method reli-
ably reproduces a range of electronic and magnetic quantities,
and is easily transferable to other spatially varying properties.
Finally, we apply our method to an important open question:
Will spin transport near edges survive in realistic systems? We
find that this crucial behavior is surprisingly robust against
long-ranged width fluctuations, which have been observed
experimentally [34].

Method. A library of 4505 graphene flakes was created,
containing both regular (finite ZGNRs) and irregular (many-
sided polygons and edge-disordered dots) geometries. This
contains a variety of flake sizes (50-9000 atoms), edge
lengths, and edge types. The system in Fig. 1 is produced by
the polygon method, with other examples given in the Supple-
mental Material (SM) [42]. Each site in a flake is classified as
either “bulk” or one of three edge types: “zigzag,” “corner,’
or “armchair” [43]. A nearest-neighbor TB model describes
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FIG. 1. Left: Site types within a disordered graphene flake, with
sublattices shown by solid or open symbols. Lines show the nearest
edge sites (of each type) to the black circle. Right: Self-consistently
calculated moments in the flake, with size (color) denoting the mo-
ment magnitude (sign).

the electronic structure of the flakes, with an on-site Hub-
bard term capturing electron-electron interactions. Within the
mean-field approximation, this reduces to a spin-dependent
on-site potential €;, = —o%mi at each site i, where m; is the
local moment and a Hubbard parameter U = 1.33]¢| gives
results in good agreement with DFT calculations [3]. In this
Letter, we consider the energetically favorable AFM solution
and restrict our focus to the undoped case with half-filled p,
orbitals. The values of m; are calculated by a self-consistent
(SC) procedure [42], starting from an initial trial solution.

The SC calculation creates a mapping from a flake geom-
etry, via the Hamiltonian, to a moment profile. Deep neural
networks can be a powerful tool to approximate such map-
pings where they are unknown or prohibitively expensive to
calculate. Layers of artificial neurons are exposed to a training
data, and have their parameters adjusted to minimize the error
between the output and the expected result. A network is
tested on unseen data during (“validation™) and after (“test”)
the training process to prevent overfitting and establish its
accuracy. Such methods have been used to estimate ab ini-
tio figures of merit for materials design [44,45], reproduce
functionals in complex many-body models [46], and predict
critical behavior in lattices [47,48]. In graphene systems, ML
approaches have been employed to predict the effects of dis-
order [49], strain [50,51], or doping [52].

Since magnetic moments are largely influenced by local
geometric details, we train neural networks [53,54] to return
individual site moments, based on local descriptors, rather
than the moment profiles of entire structures. This allows
trained models to be easily applied to systems of arbitrary
size. Our “partial” descriptor for a site contains the distances
to the (Nz, N¢, N4) nearest edge sites of zigzag, corner, and
armchair type, respectively, for both the same and opposite
sublattices as the relevant site. A “full” descriptor also con-
tains the distances between these edge sites. In each case, the
shortest path between two sites in the lattice is used as the
distance metric, which captures the connectivity of the lattice
and is important for complex geometries. The descriptors
are invariant under rotations and translations. The network is
trained to identify the absolute value of a moment, with its
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FIG. 2. (a) Comparison of actual and NN-predicted moment
magnitudes for every site, in every flake, in the test set. (b), (c) Mean
absolute error of the test set for different numbers of sites in full and
partial-type descriptors. (d), (¢) Maps of the actual moments and the
deviation of the predicted moments for a test system. (f) Comparison
of spin-polarized energy levels of this system calculated using the
actual (solid lines) or predicted moment profiles (dashed lines), with
the nonmagnetic (NM) levels (gray lines).

sign determined by sublattice. See SM [42] for more details
on descriptor generation, and for code to make moment pre-
dictions for arbitrary geometries.

The actual moments for all 271 590 sites in the 451 test set
flakes are compared to those predicted by the most accurate
of the trained neural networks in Fig. 2(a), which uses a full
descriptor with Nz = 11, Ny = 3, N¢ = 5. The distribution is
maximal along the diagonal and decays rapidly away from it,
showing an excellent correspondence between predicted and
actual moments. We now consider how the accuracy achieved
depends on the descriptor details. Unsurprisingly, the mean
absolute error (MAE) decreases as N increases, adding more
7.7 site information to the descriptor, while keeping N¢ and Ny
fixed [Fig. 2(b)]. Although they are not typically associated
with edge magnetism, Fig. 2(c) shows that information about
other edge types is also essential. Armchair and corner sites
can occur at the end of ZZ segments, and help indicate the
length of a ZZ edge. Full descriptors, by including all the
pairwise edge site separations, give a much more complete
description of the edge structure near a site. They give a
significant improvement over partial descriptors, containing
only the distances to the site of interest, but typically require
larger networks and more memory and training time. While
the MAE is a useful metric to compare networks trained on
the same sets, as above, its magnitude largely depends on
the specific flakes in the test set. Perhaps more insightful is
the MAE on all edge sites in irregular flakes, which for our
optimal network is ~7 x 1073 up, or less than 3% of the edge
moment in a pristine ZGNR [42].

Generalization. The actual moments in a polygon flake
from the test set and the prediction error at each site are
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FIG. 3. (a), (b) Comparison of the spin-split band gap and the total magnetic moment of each flake in the test set, calculated using moments
from both self-consistent (SC) and machine-learning (ML) methods. (c), (d) Predicted moments for geometries with features, such as internal
edges and rugged peninsulas, which are not present in the training set. The insets compare the actual and predicted moments in each system.

mapped in Figs. 2(d) and 2(e). The predicted moments fol-
low the expected trends, i.e., decay from the center of long
zigzag edges towards the bulk or other edge types, and have
an excellent quantitative match with the actual moments with
discrepancies at only very few sites. Since the network is only
given local site information, it is not aware of the overall size,
shape, or edge lengths of a flake. However, many quantities
depend on the moment profile of the entire flake, and if suf-
ficiently accurate, more-or-less instantaneous ML predictions
would allow us to circumvent the SC computational bottle-
necks. Energy spectra of the considered flake are shown in
Fig. 2(f), with the dashed black and red lines showing the up-
and down-spin levels calculated using ML moments. They
align almost perfectly with results using exact SC moment
profiles (solid lines). Comparison with the nonmagnetic case
(gray lines) shows that the ML levels accurately capture both
the qualitative and quantitative features of the spectrum, in-
cluding the spin splitting of zero-energy states and the overall
level distribution.

The band gap E; of a flake can be enhanced by spin
splitting, and is sometimes taken as a proxy for local mag-
netism in experiments [33]. Figure 3(a) compares E¢ (in log
scale), calculated using both SC and ML moment profiles, for
every test set flake. The ML moments give a highly accuracy
estimate once Eg 2 0.01]¢| ~ 30 meV, with an average error
of ~3%. The total magnetic moment M of a flake is also of
interest, since the SC value exactly obeys Lieb’s theorem [7]
and is given by the difference between the number of A and
B sublattice sites: M = Ny — Np. Site-by-site ML estimates
place no constraints on M, nonetheless Fig. 3(b) shows excel-
lent agreement with SC results and Lieb’s theorem.

The ML approach clearly allows for quick and reliable esti-
mations of systemwide properties relevant to both theoretical
and experimental studies. The model successfully generalizes
to flakes similar to those on which it was trained, but as these
do not include every possible kind of edge profile, it is worth
examining its performance outside the test set. Figure 3(c)

contains an internal perforation, none of which are present
in the training set, and which increases the complexity of
the moment profile. Nonetheless the network is able to ac-
curately reproduce the SC result. Key to its success is the
distance metric used in the descriptor, which prevents undue
influence between sites separated by the perforation. This is
also important for the geometry in Fig. 3(d), based on the
coastline of Ireland. This contains a mix of edges, angles, and
local disorders that do not emerge from the simpler etching
methods. ML predictions again agree with full calculations,
and in particular capture complex behavior where parallel
peninsulas give large numbers of nearby edge sites.

Application to spin transport. Finite flakes are a use-
ful platform for building a ML model, but applicability is
limited without generalization to extended ribbons, which
underpin the majority of proposed devices. Local defects,
functionalizations, and reconstructions can inhibit moment
formation or backscatter electrons near the edge, remov-
ing the desired behavior [11,55-57]. State-of-the-art epitaxial
[17,34] and bottom-up grown ribbons [29,32,35], where such
strong local disorders are largely absent, nonetheless include
longer-ranged disorders, such as smooth width fluctuations
or irregular junctions. Edge roughness has been extensively
studied in nonmagnetic ribbons and typically requires config-
urational averaging over large numbers of ZGNRs [58]. This
prevents similar studies in magnetic ribbons, as calculating
the required moment profiles is prohibitively expensive. This
cost can now be allayed using accurate ML moments, enabling
the study of spin-polarized transport in experimental-scale
disordered ZGNRs.

The device in Fig. 4(a) contains smooth width fluctuations
similar to experimental systems [17,39]. It is also near the
upper limit of systems that can be solved self-consistently,
allowing us to benchmark ML results. The inset confirms
the excellent generalization of the ML model to this sys-
tem, which manifests as an almost perfect agreement between
transmission calculations using ML (lines) and SC (dots)
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FIG. 4. (a) Spin-dependent transmission in an edge-disordered
ZGNR, calculated using SC (symbols) and ML (lines) moment pro-
files. The insets show the accuracy of the ML moments and the
moment profile along the ribbon. (b) Transmissions through a larger
system. The inset maps the current flow and spin polarization at the
marked energy. Spin-polarized channels are visible along the rough
edges.

moments. Machine learning is being used here to predict
moment profiles, not to directly estimate transmission [49] as
this can be efficiently calculated using recursive techniques
[42,59] once the moments are known. Since ML moments
are sufficiently accurate for transport calculations, we now
scale up to larger systems that would otherwise be compu-
tationally intractable. Figure 4(b) investigates such a system
using ML-predicted moments only. Without edge disorder,
the transmission (per spin) is higher in a magnetic (solid
gray) than a nonmagnetic ribbon (dashed gray) in the range
0.02|¢] < E < 0.2]¢|. This is due to an additional dispersive
edge mode, arising from spin splitting of a flat band in the
nonmagnetic system.

Comparing the disordered spin-dependent results to both
pristine cases allows us to explain the effect of edge rough-
ness. At energies E = 0.1|¢], the disordered transmissions
return to the sequence seen for NM ribbons, suggesting that
the spin-polarized edge mode has been completely quenched.
The other modes are robust against smooth disorder, so the
plateau behavior persists, but with an energy shift caused by
mode matching between sections with different widths. Very
different behavior is seen at low energies, e.g., at the arrow
in Fig. 4(b), where the disordered spin-dependent cases show

near perfect transmission. The persistence of spin transport
here is due to a lack of backscattering possibilities. The left-
and right-propagating modes for a given spin are located on
the same edge, so scattering between these modes can occur
without a spin flip. However, these two modes are associated
with widely separated states in reciprocal space, so that scat-
tering between them requires short-ranged disorder, which is
not present here. The only other mode at this energy has very
little edge component, which limits backscattering into it.

This suppression of backscattering allows spin-polarized
transport in edge channels to persist, as shown explicitly in
the inset map, which plots the local current flow (arrows) and
spin polarization (colour) for the marked energy. While spin
transport survives at low energies, it vanishes at higher ener-
gies due to the onset of higher-order bulk modes which offer
additional backscattering possibilities. These results provide
a useful insight for experimental device design: The desired
spintronic behavior can also appear for rough edges, but in a
more limited energy range than for pristine systems.

Conclusions. Neural networks gives a quick and reliable
estimate of the mean-field solution to the Hubbard model in
a half-filled bipartite lattice. Prediction cost scales linearly
with system size, allowing for rapid calculations in systems
that were previously intractable. Immediate applications lie
in the study of graphene edge magnetism, where the elec-
tronic, magnetic, and transport properties of a wide range of
systems can be efficiently and accurately calculated. Given
the excellent generalization of the model, both to geometries
and quantities unseen during training, it can be applied to
a number of problems. It allows for a detailed analysis of
transport in disordered GNRs, where understanding the in-
terplay between large-scale disorder and local magnetism is
essential if GNRs are to play their mooted roles in electronic,
spintronic, and quantum devices. To help achieve this, we
have made available sample code to quickly apply our model
and predict moments for arbitrary geometries [42].

Our approach can also act as a starting point for more
accurate studies or more complex problems. ML profiles can
be used as almost-converged “initial guesses” in SC calcula-
tions, reducing the number of steps required. More accurate
ML estimates may also be achieved by supplementing the
simple geometric information in our descriptors. For example,
moment formation is strongly tied to the local density of states
[60], so including a non-SC evaluation of this quantity could
improve model performance. A trade-off will emerge here
between the extra time needed to generate the descriptor and
the accuracy required. These strategies were not needed to
achieve high accuracy in this work, but could help in more
complicated cases. Examples include lattices away from half
filling, with nonuniform background potentials, or of different
materials, where exact solutions are difficult to calculate and
display less intuitive trends.

Finally, we focused here on material properties at the nano-
and mesoscopic scales where graphene systems are investi-
gated experimentally and incorporated into devices. This is
in contrast to previous studies using ML to consider more
fundamental aspects of the Hubbard model [46,61], which
typically consider smaller systems in which exact solutions
can be found. However, the techniques developed here are
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not scale specific and may also find applicability in advanced
many-body models.
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