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Transition from metal to higher-order topological insulator driven by random flux
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Random flux is commonly believed to be incapable of driving full metal-insulator transitions in noninteracting
systems. Here we show that random flux can after all induce a full metal–band insulator transition in the two-
dimensional Su-Schrieffer-Heeger model. Remarkably, we find that the resulting insulator can be an extrinsic
higher-order topological insulator with zero-energy corner modes in proper regimes, rather than a conventional
Anderson insulator. Employing both level statistics and finite-size scaling analysis, we characterize the metal–
band insulator transition and numerically extract its critical exponent as ν = 2.48 ± 0.08. To reveal the physical
mechanism underlying the transition, we present an effective band structure picture based on the random-flux
averaged Green’s function.
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Introduction. Disorder, being present in most physi-
cal systems, constitutes a broad field of physics research.
As one of its most salient effects, random potential dis-
order can induce metal–Anderson insulator transitions in
various systems [1–5], prominently topological phase transi-
tions [6–9], as recently observed in cold-atom and photonic
systems [10,11]. Random flux is another generic type of disor-
der that has been widely investigated in two-dimensional (2D)
electron systems [12–24]. Yet, it is believed that random flux
is unable to drive a system with chiral symmetry from metal
to Anderson insulator if the Fermi energy locates precisely at
zero; instead it localizes all states except the ones at the band
center [12,13]. Moreover, the interplay between random flux
and topology has barely been explored.

In this work, we discover a random-flux driven metal–band
insulator transition. To this end, we add random flux to the 2D
Su-Schrieffer-Heeger (SSH) lattice model [Fig. 1(a)], which
has attracted broad interest recently [25–27]. In the absence of
random flux, this model has been realized in different physical
platforms [28–35], and sparked the rapidly developing field
of higher-order topological phases [29–55]. Importantly, the
existence of a metallic phase in the clean 2D SSH model and
its rich topological properties due to nontrivial inner degrees
of freedom provide a promising playground for revisiting
the issue of random-flux driven transitions in the context of
topological band structures.

Remarkably, we find that the spectrum of the system
acquires a finite bulk gap in a broad parameter range when ex-
ceeding a critical strength of random flux [Figs. 1(c) and 1(d)],
thus transforming from a metallic phase to a band insula-
tor. This metal–band insulator transition is confirmed and
carefully analyzed by employing energy level statistics and
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finite-size scaling theory. The corresponding critical exponent
is estimated to be ν = 2.48 ± 0.08. Interestingly, we find that
the band insulator induced by random flux can be an extrin-
sic higher-order topological insulator (HOTI) by calculating
the topological index qxy and identifying the corresponding
boundary signatures. Furthermore, with an effective band
structure picture based on the flux-averaged Green’s function,
we show that the metal–band insulator transition can be at-
tributed to the emergence of strongly momentum-dependent
flux-induced terms that have a nontrivial matrix structure in
the effective Hamiltonian. By contrast, such an interplay of
random flux and internal degrees of freedom in the unit cell is
absent in the conventional random-flux model.

2D SSH lattice with random flux. As visualized in Fig. 1(a),
the 2D SSH lattice model features dimerized hopping ampli-
tudes along both x and y directions [25]. In the absence of
disorder, it can be described by the Hamiltonian

H0(k) = (tx + t cos kx )τ1σ0 − t sin kxτ2σ3

+ (ty + t cos ky)τ1σ1 − t sin kyτ1σ2, (1)

where τ and σ are Pauli matrices for different degrees of
freedom within a unit cell; k = (kx, ky ) is the 2D wave-vector;
t and tx (ty) denote the two staggered hopping strengths in
the x (y) direction. For simplicity, we put the lattice con-
stant to unity and assume t > 0. Note that kx and ky are
decoupled in Eq. (1). The total Hamiltonian can be recast
as the sum of two SSH models along x and y directions, re-
spectively, i.e., H0(k) = Hx(kx ) + Hy(ky). The matrices τ1σ0

and τ2σ3 contained in Hx(kx ) anticommute with each other.
The same holds for the matrices τ1σ1 and τ1σ2 contained in
Hy(ky). However, the two blocks commute with each other,
i.e., [Hx(kx ), Hy(ky)] = 0. As a consequence, the four energy
bands of Eq. (1) are given by E±

η = ±[εx(kx ) + (−1)ηεy(ky)]

with εα (kα ) = √
t2
α + 2tαt cos kα + t2, α ∈ {x, y}, and η ∈

{1, 2}. When ||tx| − |ty|| < 2t , the system is in a metallic
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FIG. 1. (a) Schematic of the 2D SSH model with random flux.
Blue (red) thick and thin bonds mark dimerized hopping amplitudes
in the x (y) direction. The round arrow (with different sizes and
opacities) in each plaquette indicates the random flux. (b) Energy
spectrum of the model without random flux for (tx, ty ) = (0.2t, 0.6t ).
(c) Disorder-averaged spectrum as a function of U for (tx, ty ) =
(0.2t, 0.6t ). For large U , the system acquires a bulk gap that pro-
tects four zero-energy modes (red). (d) Density plot of the directly
disorder-averaged gap as a function of tx and ty at U = 2π . The
dimension of the system is L ≡ Lx = Ly = 30 with open (periodic)
boundaries in (c) [(d)]. Here, 200 random-flux configurations are
considered.

phase at low energies [Fig. 1(b)]. The model has C2v group
symmetry in general (tx �= ty). Moreover, it respects chiral
symmetry γ5H0(k)γ −1

5 = −H0(k) with the chiral operator
γ5 = τ3σ0. In the clean case, the constituting 1D blocks along
x and y directions are topologically nontrivial when |tx| < t
and |ty| < t , respectively. This property can be identified by
symmetry indicators based on the symmetry representations at
high-symmetry points in the Brillouin zone that are described
in Refs. [56–59]. We note that there may be corner-localized
bound states in the bulk continuum, while their stability needs
to be protected by C4v symmetry [60,61] which corresponds
to tx = ty in Eq. (1).

We now add random flux to the model such that each
plaquette encloses a flux that has random values drawn from
a uniformly distributed interval [−U/2,U/2], as illustrated
in Fig. 1(a). Here, U is the strength of random flux within
the range of [0, 2π ], in units of the magnetic flux quantum

0 = hc/e [62]. The random flux generates random Peierls
phases in the hopping matrix elements. Thus, time reversal
symmetry is broken. However, chiral symmetry is still pre-
served and plays a crucial role in the metal-insulator transition
as we elaborate below. Note that when each plaquette encloses
a π flux uniformly, the system is deformed to the Benalcazar-
Bernevig-Hughes (BBH) model [26,27].

Metal–band insulator transition driven by random flux.
Next, we demonstrate the existence of random-flux driven
metal–band insulator transitions in the 2D SSH model by

employing level statistics [63,64]. In the presence of chiral
symmetry, the model falls into the chiral unitary universality
class, i.e., AIII in the AZ classification [65]. The insulating
and metallic phases can be distinguished by inverse participa-
tion ratio (IPR) [66–68] and level spacing ratio (LSR) [53,69].
The IPR is defined by the eigenstates φn(R, ζ ) of the system
as

In =
∑

R

4∑

ζ=1

|φn(R, ζ )|4, (2)

where the sums run over all unit cells labeled by R and the
inner degrees of freedom ζ within a unit cell. The subscript n
stands for the nth state with the corresponding eigenenergy En

listed in ascending order. The LSR is defined in terms of the
spectrum as [69]

rn = min(sn, sn−1)

max(sn, sn−1)
, (3)

where sn ≡ En+1 − En is the difference between two adjacent
energy levels. Both the averaged IPR 〈I〉 and LSR 〈r〉 take
different values in the metallic and insulating limits, thus
providing important tools to characterize metal-insulator tran-
sitions.

We show below that the level statistics smoothly cross over
between the two limits as the random flux drives the system
from a metallic to an insulating phase. Due to the presence
of chiral symmetry, the eigenenergies of the system come in
pairs (±En). For illustration, we take tx = 0.2t and ty = 0.6t
and consider an energy window containing NE energy levels
around E = 0. Figure 2(a) displays 〈I〉 as a function of U .
Clearly, 〈I〉 increases monotonically from nearly zero in the
small U limit to finite values for large U . This indicates that
the system transits from a metallic (with vanishing 〈I〉) to an
insulating phase (with finite 〈I〉). Concomitant with the trans-
formation of 〈I〉, we also observe that 〈r〉 decreases smoothly
from a universal value 0.6 at small U (�0) to another uni-
versal value 0.386 at large U (�2π ), as shown in Fig. 2(b).
For sufficiently large L, the numerical values approach the
universal constants in both limits of U . These results agree
with those obtained for the uncorrelated Poisson ensemble
in the insulating phase (〈r〉ins ≈ 0.386) [69] and the unitary
ensemble in the metallic phase (〈r〉met ≈ 0.6) [70].

To better illustrate the transition, we analyze the probabil-
ity distribution P(r) of LSR [71]. As shown in Fig. 2(c), P(r)
also exhibits universal but different forms in the small and
large U regimes [72]. For small U , we find that P(r) can be
well described by the distribution function of the Gaussian
unitary ensemble (GUE) PGUE(r) = 81

√
3

2π

(r+r2 )2

(1+r+r2 )4 [70]. This
finding supports that the system is in a metallic phase. For
large U , P(r) instead resembles the uncorrelated Poisson dis-
tribution Pp(r) = 2

(1+r)2 , which again indicates an insulating
phase [69]. These results provide direct evidence that the sys-
tem undergoes a metal-insulator transition by increasing U .
This metal-insulator transition is generic for parameters ful-
filling ||tx| − |ty|| < 2t , tx �= t , and tx �= t [73]. It is, however,
absent for tx = ty = t , which corresponds to the conventional
random-flux model [59]. We note that the band gap opening
by random flux [see Fig. 1(c)] may modify the statistical
behavior of low energy states close to the band center.
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FIG. 2. (a) Averaged IPR 〈I〉 as a function of U for L = 20, 30,
and 40, respectively. (b) Averaged LSR 〈r〉 as a function of U for L =
20, 30, and 40, respectively. (c) Distribution of LSR P(r) in different
limits. (d) Averaged LSR 〈r〉 near the critical point as a function of
U for various L. (e) Scaling behavior of IPR in the metallic (blue)
and insulating (green) phases, and at the critical point Uc ≈ 0.75π

(red). (f) Number variance 2 as a function of
√〈N〉 at the critical

point. We consider NE = 16 and 4000 random-flux configurations in
(a), (b), (c), and (e). The parameters tx = 0.2t , ty = 0.6t and periodic
boundary conditions are chosen for all plots.

Critical exponent. Critical exponents are keys for charac-
terizing continuous phase transitions. To identify the critical
exponent ν and critical random-flux strength Uc, we perform
a finite-size scaling analysis of the averaged LSR 〈r〉 [74–76].
According to the single-parameter scaling theory, 〈r〉 shows
a size-independent value at U = Uc. Concentrating around
the zero energy, we fix the energy window to capture 10%
of the eigenvalues and choose the number of random-flux
configurations in such a way that the total eigenvalue number
reaches 5 × 107. As shown in Fig. 2(d), 〈r〉 increases as the
system size L grows before the transition whereas it decreases
as L grows after the transition. The scaling argument near
Uc states that 〈r〉 can be described by a universal function
of the form F ( f1(u)L1/ν, f2(u)L−y) characterized by ν, where
u ≡ (U − Uc)/Uc, and y is an auxiliary exponent; f1(u)L1/ν

and f2(u)L−y stand for relevant and irrelevant length-scale
corrections, respectively [76,77]. Close to Uc, we expand
fη(u) = ∑mη

j=0 aη
j u

j with η ∈ {1, 2}. Thus, ν and Uc can be
identified by fitting the Taylor expansion of the function F

near the critical point [76,77]. Thereby, we identify the criti-
cal exponent of the random-flux driven metal–band insulator
transition as ν = 2.48 ± 0.08. This critical exponent is close
to that of integer quantum Hall transitions with ν ≈ 2.59 [78].
In contrast to ν [79], the critical strength Uc depends explicitly
on the parameters tx and ty. For the parameters considered in
Fig. 2(d), we find Uc ≈ 0.75π , in accordance with the gap
opening [Fig. 1(c)].

Fractal dimension and spectral rigidity. At the critical
point, the wave functions of the system show multifractality
due to strong fluctuations [80,81]. The multifractality gives
rise to one of the fractal dimensions d2 defined through
the scaling behavior 〈I〉 ∝ L−d2 . Figure 2(e) displays ln〈I〉
as a function of ln L at small, large, and critical values
of U , respectively. At the critical point U = Uc (triangles),
we can extract d2 = 1.085 ± 0.034. At U = 0.3π (circles)
and U = 2π (squares), we obtain d2 = 1.880 ± 0.006 and
0.119 ± 0.008, which are close to the values of an ideal metal
(corresponding to d2 = 2) and an insulator (corresponding to
d2 = 0), respectively.

The spectral rigidity is also related to the wave-function
multifractality. It is defined as the level number variance
2 ≡ 〈N2〉 − 〈N〉2 in an energy window, where 〈N〉 is the
disorder-averaged number of energy levels within this win-
dow. For conventional Anderson transitions, 2 ∝ 〈N〉 at the
critical point when the energy window is sufficiently large.
The ratio χ ≡ 2/〈N〉 defines the compressibility of the spec-
trum. It is conjectured that d2 is related to χ by the relation
χ = (2 − d2)/4 in 2D [82,83]. However, our scaling law fol-
lows instead 2 ∝ √〈N〉 [Fig. 2(f)], resembling the complex
Ginibre ensemble [84]. This behavior may be due to the fact
that the random flux gives a complex matrix ensemble. Thus,
χ goes to zero in the large N limit, and the aforementioned
conjecture fails in our system.

Effective band structure picture for the metal–band in-
sulator transition. To reveal the underlying mechanism, we
average the Green’s function over many random-flux con-
figurations, so as to effectively restore lattice translation
invariance and derive the self-energy (k) due to the random
flux [59,85]. We find that (k) not only modifies the coef-
ficient functions of the matrices in the original Hamiltonian
[cf. Eq. (1)] but also introduces additional terms associated
with new matrices τ1σ3 and τ2σ0 (that also appear in the
BBH model). This feature can be understood in terms of
higher-order scattering processes induced by random flux. It is
intimately related to the interplay between the internal degrees
of freedom of the model and the random flux that couples
directly to momentum in the system. Consequently, (k) de-
cisively depends on momentum. These observations indicate
that the effective Hamiltonian Heff (k) ≡ H0(k) + (k) for
the system with random flux can be regarded as a mixture
of the 2D SSH and BBH models. Remarkably, a band gap
for strong U can be directly revealed by the effective band
structure of Heff (k) [59]. The critical value Uc of random-flux
strength obtained here is consistent with the numerical result
in Fig. 1(c). In this sense, the random flux generates a band
insulator by opening an effective gap in the bulk after the
transition.

Extrinsic HOTI induced by random flux. Now, we show that
in the parameter regime |tx| < t and |ty| < t the band insulator
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FIG. 3. (a) Phase diagram of qxy against tx and ty. The dimen-
sion of the system is L = 30 with 30 random-flux configurations.
(b) Electron charge density in the extrinsic HOTI phase at half
filling. (c) Disorder-averaged energy spectrum as a function of tx

for ty = 0.3t under open boundary conditions. (d) Disorder-averaged
edge polarization Px as a function of tx for ty = 0.3t . U = 2π for all
plots.

induced by random flux can be an extrinsic HOTI [40,41]. For
concreteness, we consider U = 2π . In this case, the system is
an insulator with a finite energy gap, unless |tx| = |ty| = t ; cf.
Fig. 1(d) [86]. Note that the disorder-averaged flux on each
plaquette is zero. The defined electric quadrupole moment
qxy can provide a topological index to characterize the ex-
trinsic HOTI [26,27,87–89]. In the phase diagram shown in
Fig. 3(a), which is similar to that of BBH model, we observe
a nontrivial region (blue) with a half quantized qxy = 1/2.
In the outer region (white), the system is a trivial insulator
with qxy = 0. This implies that the random-flux driven higher-
order topological phases can be continuously connected to
that of the BBH model. The quantization of qxy is protected by
chiral symmetry [51]. Accordingly, a nontrivial qxy indicates
the emergence of zero-energy modes at the corners of the
system. This is confirmed numerically in Figs. 1(c) and 3(c)
where four zero-energy modes clearly emerge in the nontrivial
phase whereas they disappear in the trivial phase. Further-
more, we calculate the local charge density at half filling
[Fig. 3(b)]. Summing the charge density over each quadrant
including a single corner, we find that the total charge takes
fractional values ±1/2 as long as L is large enough. These
fractional corner charges provide another hallmark of the
HOTI.

For a fixed strong U , the system transits between an extrin-
sic HOTI and a trivial insulator by changing tx or ty. Due to its

extrinsic nature, the topological phase transitions take place at
the boundaries instead of the bulk of the system. To elucidate
this phase transition, we calculate the effective Hamiltonian
Hedge for edges in the presence of random flux via a recursive
Green’s function method [90,91]. We see the edge spectrum
close and reopen around phase boundary. Alternatively, the
transition can also be shown from the edge polarization of
Hedge [27,92]. For illustration, we consider the edge along x
direction and present the disorder-averaged polarization Px as
a function of tx in Fig. 3(d). Near tx = t , Px changes suddenly
from 1/2 to 0, indicating a topological phase transition. The
results for edges along y direction can be obtained similarly.
We note that the system is nontrivial only if both edge Hamil-
tonians along x and y directions are nontrivial.

Discussion and conclusions. Note that the metal–band in-
sulator transition driven by random flux is found to also occur
in the topologically trivial regime [59], which indicates its
generality. Clearly, the random flux with zero mean is differ-
ent from the case with a uniform flux, where the Hofstadter
butterfly emerges [93–95]. In the limit of tx = ty = t , our
system reduces to the conventional random-flux model. In this
limit, we recover the well established result that the bulk states
at the band center stay delocalized and no metal-insulator tran-
sition occurs [59]. We emphasize that the random-flux driven
metal–band insulator transition is distinctively different from
related work in interacting systems [23,24] where the compe-
tition between (random) flux and electron-electron interaction
is responsible for an interaction driven phase transition.

The 2D SSH model can be realized in different platforms
such as metamaterials [30–34] and microwave and electric
circuits [29,35,96,97]. In particular, the manipulation of ef-
fective magnetic fluxes has become experimentally accessible
in sonic crystals and circuit simulators [98,99]. Therefore,
these materials may provide us with promising platforms
to test our predictions by taking advantage of their high
controllability.

In conclusion, based on the 2D SSH model we have re-
vealed an example of a metal–band insulator transition that is
solely driven by random flux. We have analyzed this metal–
band insulator transition by level statistics and finite-size
scaling theory, and found the critical exponent as ν = 2.48 ±
0.08. It is shown that the emergent insulator can be an extrin-
sic HOTI by presenting its phase diagram and characteristic
boundary signatures. We have further proposed an effective
band structure picture to understand the metal–band insulator
transition driven by random flux.
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