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Magneto-Seebeck coefficient of the Fermi liquid in three-dimensional Dirac and Weyl semimetals
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We investigate dissipationless magneto-Seebeck effect in three-dimensional Dirac and Weyl semimetals. The
Hall resistivity ρyx and thermoelectric Hall coefficient αxy exhibit plateaus at the quantum limit, where electrons
occupy only the zeroth Landau level. In this condition, quantum oscillation in the Seebeck coefficient Sxx ≈
ρyxαxy is suppressed, and the massless fermions are transformed into a Fermi liquid system. We show that the
Seebeck coefficient at the quantum limit is expressed by the harmonic sum of Fermi wavelength and thermal de
Broglie wavelength scaled by magnetic length.
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Research on thermoelectricity in low-dimensional mate-
rials is pioneered by the theoretical works of Hicks and
Dresselhaus [1–3]. They found that by reducing the dimen-
sion of materials (essentially confining charge carriers in
one or two directions), a larger Seebeck coefficient Sxx (or
thermopower) and power factor can be obtained due to en-
hancement of electronic density of states (DOS) at the Fermi
energy. Such a quantum confinement effect takes place only if
the typical size of the material is smaller than the thermal de
Broglie (TDB) wavelength [4–6]. In this Letter, we show that
an analogous phenomenon also occurs in three-dimensional
(3D) Dirac and Weyl semimetals when we apply magnetic
field B. The confinement of massless fermions in a 3D Fermi
pocket by B will induce the Fermi liquid behavior in the
material.

An advantage of using 3D Dirac and Weyl semimetals in
magnetothermoelectric devices was pointed out by Skinner
and Fu [7]. They showed that a large, nonsaturating Sxx as a
function of the magnetic field is achieved in the dissipationless
limit. By keeping the number of carriers n0 constant, the
thermoelectric Hall coefficient over temperature αxy/T ap-
proaches a finite value, and the Hall resistivity ρyx is expressed
by the classical formula ρyx = B/(n0e) (e is the elementary
charge) [8–10]. Therefore, Sxx is linearly proportional to B,
Sxx ≈ ρyxαxy ∝ B [11]. On the other hand, Galeski et al. [12]
recently observed saturating Sxx in a 3D Dirac semimetal
ZrTe5 [13], in which the classical ρyx no longer holds and
3D quantum Hall effect (QHE) occurs. They showed that the
Hall plateau in the quantum limit is proportional to half of
the Fermi wavelength in the direction parallel to the magnetic
field, λ

‖
F , ρyx ∝ λ

‖
F /2.

Similar experimental results are reported by Tang et al.
[14] in ZrTe5, and by Wang et al. [15] in HfTe5. It is im-
portant to note that the QHE appears only in two-dimensional
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electron systems when the Fermi level is located between two
Landau levels (LLs) [16,17]. Thus, 3D materials normally do
not exhibit the QHE because of the continuous dispersion
along the direction of B. To explain the QHE in 3D Dirac
and Weyl semimetals, it was argued [14] that the formation
of a charge density wave (CDW) [18,19] due to the Fermi
surface instability plays a decisive role in discrete LLs near
the Fermi energy. However, spectroscopic and transport mea-
surements [12] do not show any signs of CDW. Thus, it is
necessary to confirm analytically whether the Hall plateau
arises from the intrinsic bulk properties of the 3D Dirac and
Weyl fermions, especially since recent calculations on the
magnetotransport coefficients of the Weyl semimetal with fi-
nite thickness do not show ρyx ∝ λ

‖
F /2 in the quantum limit

[20–23].
In this Letter, we show that the saturated value of Sxx is the

Seebeck coefficient of 3D Fermi liquid S [24]. In particular,
we show that the condition for Sxx = S follows a scaling law
between three fundamental lengths: the magnetic length, the
Fermi wavelength, and the TDB wavelength in the direction
perpendicular to B, where carriers are magnetically confined.
Further, we show that the QHE and saturating Seebeck coef-
ficient originate from the occupation in the zeroth LL in the
3D Dirac fermion, which possesses a linear dispersion and is
independent of B, and thus cannot be satisfied in electron gas
in conventional 3D metals or semiconductors.

The calculation of the Hall conductivity and thermoelectric
Hall coefficient is carried out within quantum edge formalism
[7,8,25–27], where transport scattering time τ is assumed to
be small compared with the inverse of cyclotron frequency
1/ωc, i.e., ωcτ � 1. In this condition, the magnitude of the
longitudinal conductivity σxx is much smaller than σxy, which
implies that the Hall resistivity is approximately given by
ρyx ≈ 1/σxy, and Sxx ≈ αxy/σxy = ρyxαxy [28].

Let us consider 3D Weyl and Dirac semimetals with a
volume LxLyLz, where Li with i = x, y, z is the length of the
material in the ith direction. In the presence of an exter-
nal magnetic field in the z-direction B = Bẑ, an electron is
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confined to move on an orbit in the xy plane, but move freely
in the z direction with the Fermi velocity vz

F . A potential
difference Vx is applied between the right (x = +Lx/2) and
left (x = −Lx/2) edges of the sample, which gives rise to
the electric field E = Exx̂ = −∂Vx/∂x. In the presence of
both B and Ex, the LL spectrum without the Zeeman term is
given by (see Sec. A in the Supplemental Material [29] with
Refs. [30–32] for the derivation)

En(B, ky, kz ) = εd (B, ky) + εn(B, kz ), (1)

where εd (ky) ≡ h̄kyvd and εn(kz ) ≡
sgn(n)

√
EB

2|n|/γ 3 + (h̄vz
F kz/γ )2. Because of εd (ky), the LL

is dispersive along ky, which allows charge carriers to move in
the y direction with velocity vy = h̄−1∂En(ky, kz )/∂ky = vd ,
where vd ≡ Ex/B is the drift velocity. εn(kz ) corresponds to
the cyclotron energy, where EB ≡ √

2h̄v⊥
F /�B, �B ≡ √

h̄/(eB)
is the magnetic length, and v⊥

F is the Fermi velocity in the
direction perpendicular to the magnetic field. Due to the
relativistic nature of the Dirac fermion, the effect of Ex is

also included in the Lorentz factor, γ ≡ 1/

√
1 − (vd/v

⊥
F )2,

which induces the shrinking of the LL for Ex 	= 0 [30,31].
Nevertheless, since we focus on the case for strong B, we can
take γ ≈ 1. It is noted that for |kz| 	= 0, there are two possible
values of the zeroth LL, i.e., E0 = εd (ky) ± h̄vz

F kz.
By using the fact that �B 
 Lz, kz = 2πnz/Lz (nz ∈ Z) can

be treated as a continuous variable
∑

kz
/Lz → ∫ ∞

0 dkz/π , the
DOS per unit volume for each spin direction is given by

D(E ) = eB

h

∑
ky

∫ ∞

0

dkz

π

∞∑
n=−∞

Nnδ[E − En(ky, kz )], (2)

where we define Nn ≡ 1/2 (1) for n = 0 (n 	= 0) to avoid dou-
ble counting of the zeroth LL that includes both the plus and

minus signs of E0. The number of charge carriers n0 is given
by the difference between the number of electrons and holes,
as follows:

n0 =
∫ ∞

0
dED(E ) f (E − μ∗)

−
∫ 0

−∞
dED(E )[1 − f (E − μ∗)], (3)

where f (E − μ∗) ≡ 1/[eβ(E−μ∗ ) + 1] is the Fermi-Dirac dis-
tribution function, β ≡ 1/(kBT ). The chemical potential μ∗ is
given as a function of x due to Vx:

μ∗(x) = μ + eVxx/Lx, (4)

where μ is a term which determines the average carrier density
[33] in the sample. Hereafter, we adopt the condition that μ in
Eq. (4) is kept constant with respect to magnetic field.

For a given n0 in Eq. (3), the electrical Jy and heat JQ
y

currents are given by [8](
Jy

JQ
y

)
= vyn0

( −e

E − μ∗

)
= −Ex

(
σxy

T αxy

)
. (5)

By considering only the currents along the edges (x =
±Lx/2), σxy and αxy in Eq. (5) are given as a function of μ and
T , as follows (see Secs. C and D in the Supplemental Material
[29] with Refs. [20,33–37] for derivation):

σxy = 2e2

h

∑
j=±1

∞∑
n=0

jNn

∫ ∞

0

dkz

π
f [εn(B, kz ) − jμ]

≡ σ (0)
xy +

∞∑
n=1

σ (n)
xy , (6)

and

αxy = 2ekB

h

∑
j=±1

∞∑
n=0

Nn

∫ ∞

0

dkz

π

{
ln[1 + e−β{εn(B,kz )− jμ}] + β[εn(B, kz ) − jμ]

eβ[εn(B,kz )− jμ] + 1

}
≡ α(0)

xy +
∞∑

n=1

α(n)
xy , (7)

where σ (n)
xy and α(n)

xy denote, respectively, the Hall conductivity
and thermoelectric Hall coefficient for the nth LL. The pref-
actor of 2 in Eqs. (6) and (7) is given by assuming that filling
factors of the LL at x = ±Lx/2 are the same [34,35], where
almost symmetrical currents at the both edges flow in the
same direction [33,36]. The index j = +1 and −1 indicate the
contributions of electron and hole, respectively. σ (0)

xy and α(0)
xy

are the Hall conductivity and thermoelectric Hall coefficient
for the zeroth LL, which are obtained analytically as follows:

σ (0)
xy = 2e2

h2vz
F β

∑
j=±1

jln(1 + e jβμ), (8)

and

α(0)
xy = −2ekB

h2vz
F

∑
j=±1

[
2

β
Li2(−e jβμ) + jμ ln (1 + e jβμ)

]
,

(9)
where Li2(z) ≡ ∑∞

k=1 zk/k2 is the dilogarithm function.

Hereafter, we adopt the parameters for calculating ρyx =
1/σxy and αxy from the experimentally determined values
of 3D Dirac semimetal ZrTe5 [12]. The material has an
orthorombic crystal structure and anisotropic Fermi veloci-
ties vi

F along i = a, b, and c axis, where va
F = 1.164 × 105

m/s, vb
F = 1.534 × 104 m/s, and vc

F = 3.489 × 105 m/s. By
aligning B parallel to the b axis, the Fermi wave vector
kb

F = 72.9 × 10−3Å−1 is extracted from the Hall plateau in
the quantum limit, where only the zeroth LL is occupied.
To reproduce the experimental measurement of ρyx with our
model, we use kz

F = kb
F , vz

F = vb
F , v⊥

F = √
va

F vc
F = 2.015 ×

105 m/s, and μ = h̄vz
F kz

F = 7.36 meV. In the dissipationless
limit, the typical value of Ex is 2 × 102 V/m [35]. Here, we
adopt the smallest value of B = 10−2 T. Thus, vd ≈ 104 m/s

and the approximation γ ≡ 1/

√
1 − (vd/v

⊥
F )2 ≈ 1 in Eq. (1)

is valid. Furthermore, at the corresponding B, the magnetic
length becomes �B = 2.566 μm, which is much smaller than
the thickness of the ZrTe5 sample (Lz ∼ 102μm) used in the
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FIG. 1. Log-log plot of ρyx as a function of B at a constant μ =
7.36 meV for several values of T . Inset shows the linear plot of ρyx

for B = 0 − 2 T.

experiment [12]. For the corresponding Lz, we do not consider
the role of the Fermi arcs, which is essential to support 3D
QHE when Lz is comparable to the mean-free path (∼100 nm)
by forming a closed Fermi loop [38]. It is because (1) we
consider a single Dirac point in the Brillouin zone and (2) Lz

is much larger than the mean-free path.
In Fig. 1, we show a log-log plot of ρyx as a function of

B for T = 0.6, 2, 4.2, 7, and 10 K. For all temperatures, the
quantum Hall regime occurs at B ∼ 1 T , as shown in the inset
of Fig. 1. It is noted that the quantization of ρyx is not as pro-
nounced as in the two-dimensional case due to the logarithmic
singularity of the DOS upon the integration on kz (see Sec. B
in the Supplemental Material [29]). As we further increase B,
ρyx becomes independent of B and T , which indicates that all
n > 0 LLs are depopulated. As shown in the inset of Fig. 1, the
Hall plateau at ρxy ≈ 11.6 m� cm occurs for B � 1.2 T. The
present calculation reproduces recent experiments by Tang
[14] and Galeski [12]. The good agreement can be attributed
to small effective mass in ZrTe5 [12,14,39–41] (in the order
of ∼0.01me, where me is the mass of free electron), and
because there is only one spin degeneracy for each zeroth LL
[13,42,43].

Let us discuss the quantum limit case, in which ρyx =
1/σ (0)

xy . From Eq. (8), the term at j = −1 vanishes for low
temperature (|μβ| � 1), which means that only electrons
contribute to the constant ρyx for μ > 0 (and holes for μ < 0
but with opposite sign of ρyx). By using ln(1 + eβμ) ≈ βμ,
ρyx is independent of T as follows:

ρyx = 2e2μ

h2vz
F

= πh

e2kz
F

= hλz
F

2e2
, (10)

where λz
F = 2π/kz

F ≡ λ
‖
F . It is noted that the magnitude of

the Hall plateau shown by Eq. (10) has been confirmed experi-
mentally in the samples of ZrTe5 with thickness Lz ≈ 100 μm,
while an experiment on the 2D Dirac semimetal Cd3As2 [44]
with Lz ≈ 60 − 70 nm does not indicate such behavior. Thus,
we show that Eq. (10) is indeed an intrinsic property of 3D
Dirac semimetal.

In Figs. 2(a) and 2(b), we show log-log plots of αxy and
Sxx = ρyxαxy as a function of B for T = 0.6, 2, 4.2, 7, and
10 K, respectively. We can see that for B � 1 T, αxy de-
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FIG. 2. Log-log plot of (a) αxy and (b) Sxx as a function of B for
several values of T . The chemical potential is set at μ = 7.36 meV.
Grey circles indicate the saturated magnetic field, where αxy and Sxx

begin to saturate.

creases linearly with increasing B, which means that αxy is
inversely proportional to B in the linear scale. On the other
hand, Sxx does not show significant dependence on B. As
B becomes larger, oscillations appears in both αxy and Sxx

for T � 4.2 K since a few LLs touch the chemical potential.
Due to the smearing of the Fermi-Dirac distribution func-
tion by increasing T , the individual peaks in the oscillation
become indistinguishable. As the quantum limit takes place,
αxy and Sxx become constants for all temperatures. By apply-
ing the identity Li2(z) + Li2(1/z) = −π2/6 − [ln(−z)]2/2 on
Eq. (9), the explicit formula for thermoelectric Hall plateau
αxy = α(0)

xy is given as follows:

αxy = 2π2

3

ekB
2

h2vz
F

T . (11)

Equation (11) was first obtained by Kozii et al. [8] as the
saturating limit for αxy of an ideal 3D Dirac semimetal at a
large B, with a fixed number of carriers. We complement the
result by showing that exactly the same formula also prevails
for a fixed chemical potential. By combining Eqs. (10) and
(11), Sxx at the quantum limit is given as follows:

Sxx = π2

3

kB
2

e

T

μ
≡ S, (12)

where S is the expression for the Seebeck coefficient of the
Fermi liquid system [24].
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FIG. 3. Plot of the scaled Seebeck coefficient Sxx/S as a function
of λH/�B for constant μ = 7.36 meV for several values of T . Inset:
Sxx/S at a constant T = 3 K for several values of μ.

Now, let us discuss the onset of magnetic field in which
the 3D Dirac and Weyl materials behave as the Fermi liq-
uid system at the saturated magnetic field (open circles in
Fig. 2). It is noted that in the quantum limit, the uncertainty
principle determines that the radius of the electron’s orbit
is given by the magnetic length �B. Therefore, it is useful
to express the dependence of the saturated magnetic field in
term of the length scales associated with μ and T in the
direction perpendicular to B where magnetic confinement of
electrons occurs. At T = 0 K, the plateau is formed when
the magnetic energy is larger than the chemical potential,
i.e., EB � μ with μ = h̄v⊥

F k⊥
F = hv⊥

F /λ⊥
F . Thus, T ∼= 0 K, Sxx

becomes S when the ratio of the two length scales satisfies
�B/λ⊥

F � 1/(
√

2π ) ≈ 0.225.
For given a finite T , σxy and αxy are obtained by a convolu-

tion of −∂ f (E − μ, T )/∂E = (β/4)sech2[β(E − μ)/2] with
those quantities at T = 0 K (see the Supplemental Material
[29]). Thus, the shift from �B/λ⊥

F is given by W = 2kBT/EB,
resulting in Eq. (12) holding if the following condition is
satisfied:

�B

λ⊥
F

+ W � 1√
2π

. (13)

The length scale associated with the temperature is TDB
wavelength [6]. We adopt a definition of the TDB
wavelength [45] which is suitable for massless particle
�⊥ ≡ hv⊥

F /(2π1/3kBT ). Equivalently, W = √
2π2/3�B/�⊥.

By defining 1/λH as a weighted harmonic sum of λ⊥
F and �⊥,

1

λH
≡

√
2π

λ⊥
F

+ 2π5/3

�⊥ , (14)

the condition for obtaining Sxx = S is given by λH/�B � 1. In
Fig. 3, we plot Sxx/S with μ = 7.36 meV for T = 2, 4.2, and
10 K. Here, we can see the suppression of quantum oscillation

for λH/�B � 1. In Fig. 3, �⊥ is varying while λ⊥
F remains con-

stant. For the opposite condition, we plot Sxx/S for μ = 6, 9,
and 12 K at a constant T = 3 K (see inset plot in Fig. 3), where
similar behavior is observed. This phenomenon shows that the
confinement within the length of �B will transform the 3D
Dirac fermions into a Fermi liquid system. In other words,
the states of the Dirac fermions at the zeroth LL become
localized in the k space within a small Fermi surface (due to
low carrier density n0), which does not change with keeping
the chemical potential constant. When the magnetic field is
large, the Coulomb interactions between electrons decreases
because of the magnetic confinement. Thus, the magnetic
confinement effectively transforms the Fermi surface into a
weakly interacting regime. This explains the Fermi liquid be-
havior of the Dirac fermion in the quantum limit. In contrast,
we show in Sec. E of the Supplemental Material [29] with
Refs. [12,46,47] that for an ordinary massive 3D electron
gas with a fixed μ, ρyx tends to increase after n = 1 LL is
unoccupied, while αxy becomes zero, thus 3D electron gas
does not become the Fermi liquid at a strong magnetic field.

Finally, we have to consider the ranges of B and T in which
the Fermi liquid phase can survive. For λH/�B � 1.2 in Fig. 3,
the maximum value of B is around 6 T for T � 10 K and
μ � 12 meV. Around this B and higher, the scaling law may
be broken if the Zeeman term becomes more noticeable, espe-
cially if the material has a large g factor. This may explain the
increase of ρxy in ZrTe5 [12,14] and HfTe5 [15] for B � 3 T
though the Hall plateaus are observed for B < 3 T. In these
materials, the value of g is in the order ∼10 [12,39,43,48]. It
also has been observed that large B can drive phase transitions
such as band inversion [42,49], anomalous QHE [48], as well
as fractional QHE [14] and mass generation [50] due to many
body interactions. Also at higher temperature, the transport
becomes dissipative due to scattering effects [9,51], where ρxx

increases and, as a consequence, the relation Sxx ≈ ρyxαxy is
no longer valid. Nevertheless, our proposed scaling law for
an ideal 3D Dirac material may be observed experimentally
within proper ranges of B and T .

In summary, we have analytically shown that at a fixed
chemical potential, both the Hall resistivity and thermoelectric
Hall coefficient show plateau structures. In this condition,
magnetic confinement of carriers occupying the zeroth LL
transform the 3D Dirac and Weyl fermions into the Fermi
liquid. Particularly, the threshold of this phenomenon can be
parameterized by magnetic length, the Fermi wavelength, and
the TDB wavelength. Our findings establish a relationship be-
tween the three fundamental lengths in the quantum Hall and
thermoelectric Hall effects in the 3D Dirac/Weyl semimetals.
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