
PHYSICAL REVIEW B 106, L081303 (2022)
Letter

Hydrodynamics, viscous electron fluid, and Wiedeman-Franz law in two-dimensional
semiconductors

Seongjin Ahn and Sankar Das Sarma
Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland,

College Park, Maryland 20742, USA

(Received 19 July 2022; accepted 17 August 2022; published 26 August 2022)

Considering theoretically the transition between hydrodynamic and ballistic regimes in 2D semiconductors,
we show that electrons in high-mobility 2D GaAs are by far the best system for the direct observation of
collective hydrodynamic effects even in bulk transport properties independent of complicated transport features
in narrow constrictions and small systems where Gurzhi phenomena are typically studied experimentally. We
predict a strong hydrodynamics-induced generic violation of the Wiedeman-Franz law in bulk 2D GaAs systems
for mobilities as modest as 106cm2/Vs and densities 1–5 × 1011cm−2 in the temperature range of T = 1–40 K.
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Introduction.— It has been known for a long time [1] that
an interacting Fermi liquid undergoes a crossover from a
ballistic (or collisionless or diffusive) regime to a collision-
dominated collective hydrodynamic (or viscous) regime as the
inelastic momentum-conserving electron-electron interaction
strength, 1/τee, increases, surpassing the momentum-relaxing
elastic scattering rate, 1/τe, arising from impurity and phonon
scattering. In the limit τee � τe, the electrons flow ballistically
as individual quasiparticles as there is no local thermody-
namic equilibrium, but for τee � τe, the electrons behave
collectively as a fluid following continuum macroscopic
laws of hydrodynamics since fast electron-electron scattering
produces local thermodynamic equilibrium [2]. Defining a di-
mensionless effective Knudsen parameter ζ = τee/τe = lee/le,
where lee (le) is the inelastic momentum-conserving (elastic
momentum-relaxing) mean-free path, hydrodynamics (ballis-
tic) flow happens for ζ � (�)1 with a crossover around
ζ ∼ 1. The corresponding flow parameter in classical fluids is
the Knudsen number Kn defined as the ratio of the molecular
collisional mean-free path and the linear size of a physical
object (e.g., constriction or obstruction). Large Kn, which can
only happen in dilute gases, implies a failure of continuum
fluid dynamics (implying a ballistic flow of the molecules).
In quantum electron fluids, the situation is richer since, in
principle, several independent variables, lee and le as well as a
physical constriction or obstruction size (d) can be varied to
control the nature of the flow, creating many interesting exper-
imental possibilities. The mean-free paths can be controlled in
electronic systems by varying carrier density (n), temperature
(T ), and the amount of disorder (low-T mobility, μ).

It was pointed out by Gurzhi a long time ago [3,4] that
if the condition le � d � lee is satisfied in a metal in a
constrained geometry, then many unexpected and counter-
intuitive hydrodynamics-induced transport phenomena (e.g.,
resistance decreasing with increase temperature) may arise.
But the condition le � lee is essentially impossible to achieve
in regular 3D metals at any temperatures, and the subject re-

mained dormant for almost 50 years in spite of a report of the
claimed observation of the Gurzhi effect in constrained GaAs
systems 30 years ago [5]. During the last six to seven years,
however, there have been several reports of the experimental
observation of various aspects of the hydrodynamic effects
in electron liquids, mostly in clean graphene layers [6,7] but
also in other materials [8–10]. In the current Letter, we focus
on 2D GaAs systems, establishing that it is almost an ideal
system for studying electron hydrodynamics by calculating
its effective Knudsen number over a large range of density
and temperature. There has been some experimental work on
hydrodynamic aspects of 2D GaAs, mostly on various Gurzhi
effects in geometrically constrained systems (with a finite d)
with constrictions and obstructions [11–15]. But our focus is a
bulk 2D electron gas, with no geometric constraint or constric-
tion, i.e., d is effectively infinite. Through concrete theoretical
calculations, we show explicitly that the effective Knudsen
parameter in readily available 2D GaAs is much smaller
than unity rather generically, ζ � 1, over a large range of
temperature and carrier density, thus making the GaAs-based
2D electron system a generic viscous hydrodynamic fluid,
without any constriction or obstruction or boundary effects,
leading to a strong violation of the Wiedeman-Franz (WF)
law associated with its highly viscous nature. The 2D GaAs
structures are thus generically WF law violating Fermi liquids,
in spite of the common knowledge that GaAs is a weakly
interacting system where the electron interaction parameter
rs, the ratio of the Coulomb interaction energy to the nonin-
teracting kinetic energy, is typically small (rs < 1) compared
with 3D metals where rs ∼ 6. We mention that other 2D
semiconductor systems, e.g., Si 100 inversion layers, although
much more strongly interacting (rs ∼ 3-12), are never in the
hydrodynamic regime with ζ > 1.

Theory and Results.— The momentum relaxation rate in
a 2D semiconductor is characterized by its measured elec-
tron mobility, and in 2D GaAs system the typical mobility
is ∼106-107cm2/Vs, with the reported state-of-the-art high-
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FIG. 1. The calculated interaction parameter as a function of
carrier density in 2D GaAs.

est achieved mobility being >5 × 107cm2/Vs [16–19]. The
measured mobility, μ, is directly related to the momentum
relaxation rate and the elastic mean free path le using the
known GaAs electron effective mass (m = 0.07me) and the
2D carrier density n:

le = 5.22μn1/2 (1)

where n is measured in units 1011cm−2, μ in units of
106cm2/Vs, and le in μm in Eq. (1). Thus, 10 000 000 mo-
bility, which is routine (and was already achieved in 1990)
[20], corresponds to an elastic mean-free path of ∼52 mi-
crons for n ∼ 1011 density, and proportionally higher at higher
densities. Such an exceptionally long macroscopic elastic
mean-free path may misleadingly imply that the electrons
travel basically ballistically through a 2D GaAs sample, suf-
fering impurity collisions rarely. But as we show below, the
reverse is in fact true: the electron flow through a bulk high-
mobility 2D GaAs sample is in fact sluggish, being a highly
viscous bulk hydrodynamic flow (much more viscous than the
flow of honey!) due to the dominant role of electron-electron
scattering.

The momentum-conserving scattering rate due to electron-
electron interaction can be perturbatively calculated by
obtaining the imaginary part of the finite-temperature elec-

tron self-energy using diagrammatic many-body theory, and
has recently been calculated up to the next-leading-order in
temperature [21,22] and leading order in rs. The analytical
calculations are quite intricate and here we simply quote the
results:
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8

T 2

EF
ln

(√
2rsEF

T

)

+ π

24
(6 + ln(2π3) − 36 ln A)

T 2

EF

− 7ζ (3)

2
√

2π

T 3

rsE2
F

. (2)

The right-hand side of Eq. (2) gives us 1/2τee as a function of
T and n through rs = (πa2

Bn)−1/2 and EF = 2πn/gm, where
aB = κ/me2 is the effective Bohr radius, m is the electron
mass, κ is the dielectric constant, and g = 2 is the spin degen-
eracy. Here we set h̄ = 1. Note that the correct result up to the
leading order T 2 term was obtained in Refs. [23,24]. Writing
EF = TF with kB = 1, we immediately see that the inelastic
scattering rate is strongly suppressed for T � TF i.e., at low
T and/or large densities. Unfortunately, Eq. (2) is of little
use to us since it is valid at asymptotically low temperatures
where the electron-electron scattering rate is low, and hydro-
dynamics does not apply by definition. We therefore directly
numerically calculate the momentum-conserving mean-free
path lee by calculating the imaginary part of the T -dependent
electron self-energy, summing the infinite series of bubble
diagrams (i.e., the random phase approximation (RPA) series),
which is exact in the high-density limit, and is known to
produce reasonable quantitative results as long as rs is not too
large, which it is not for 2D GaAs (see Fig. 1) in the density
range of our interest.

The inelastic mean-free path is given by lee = vFτee, where

h̄/τee(T ) = 2Im�(kF, ξkF , T ) (3)

and, in the RPA theory of the infinite sum of bubble diagrams,

Im�(k, ω, T )=
∫

d2q

(2π )2
[nB(h̄ω − ξk+q) + nF(−ξk+q)]

× vc(q)Im

[
1

ε(q, ξk+q − h̄ω, T )

]
, (4)

where nF(B) is the Fermi (Bose) distribution function
and ξ = k2/2m − μ(T ) with μ(T ) denoting the chemical

FIG. 2. Calculated inelastic mean-free path in 2D GaAs as a function of (a) T for n = 1.45 and 2.5 × 1011cm−2 density and as a function
of (b) n for T = 10, 20, 40 and 100 K. Panel (c) shows the calculated Fermi temperature TF as a function of n for 2D GaAs.
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FIG. 3. Calculated elastic mean-free path as a function of (a) T , including acoustic phonon scattering for dive densities and as a function
of (b) n for five temperatures. The zero-T impurity scattering induced mobility is 106cm2/Vs for panels (a) and (b). In panel (c), the calculated
le is shown as a function of T = 0 mobility at a fixed n = 1011cm−2 for five temperatures (only acoustic phonon scattering included).

potential. Note that the Coulomb interaction vc(q) is dynam-
ically screened, divided by the dynamic dielectric function
given by ε(q, ω, T ) = 1 − vc(q)
(q, ω, T ), where 
 is the
finite-T 2D polarizability (i.e., the bare bubble) function. We
carry out the 3D integration for Eq. (4) using the appropriate
2D GaAs parameters, where one integration is necessary to
obtain the finite-T polarizability, as well as the self-consistent
calculation of the chemical potential μ(T ) numerically to
calculate lee, which is shown in Fig. 2. Our numerical results
agree with the analytical results of Eq. (4) for low T < 0.1TF.

A direct comparison between Fig. 2 and Eq. (1) shows
that the effective electronic Knudsen parameter ζ = lee/le < 1
already for T > 10 K and n < 5 × 1011cm−2 and a modest
μ = 106cm2/Vs. This implies a large regime of viscous bulk
hydrodynamic electronic flow in 2D GaAs, generically ac-
cessible to all experiments without using any constrictions,
boundaries, and obstructions. There is, however, one catch—
we must include electron-phonon scattering in the theory
to recalculate the finite-T mobility and the associated le(T )
since phonon scattering would suppress both the mobility
and the momentum relaxation mean-free path from its low-
T values quoted in experiments. Particularly, for T > 40 K,
LO-phonon scattering becomes important in GaAs, lead-
ing to an exponential (in T ) decrease in the mobility (and
consequently le) [25], leading to ζ = lee/le > 1, recovering
ballistic flow for T > 40 K. Below the LO-phonon scattering
regime, acoustic phonon scattering suppresses mobility in the
equipartition regime of quasielastic scattering for T > TBG/6,
where TBG = 2h̄skF ∼ n1/2 is the Bloch-Gruneisen tempera-
ture (s is the speed of sound and kF the Fermi wave number)
[19,25,26]. (Below this characteristic temperature, acoustic
phonon scattering is strongly suppressed and is irrelevant for
our considerations.) We calculate the acoustic phonon scatter-
ing induced finite-T correction to the momentum relaxation
mean-free path le, including both piezoelectric coupling and
deformation potential coupling in the equipartition quasielas-
tic regime by using parameters appropriate for 2D GaAs and
following Refs. [25,26]. The mobility and mean-free path
decrease as 1/T due to the phonon corrections in this high-
T (i.e., T > TBG/6) regime. The calculated result including
phonon scattering is shown in Fig. 3.

A comparison of Figs. 2 and 3 manifestly show that gener-
ically the Knudsen parameter in 2D GaAs is ζ � 1 in large
regimes of 2D density (n ∼ 1-5 × 1011cm−2) and temperature

(T ∼ 5–40 K), making viscous bulk hydrodynamic flow the
generic property of 2D GaAs electrons for mobilities as low as
106cm2/Vs. A rough estimate of the bulk kinematic viscosity
coefficient of GaAs electrons is given by ν ∼ vFlee, provided
that the hydrodynamic limit of le � lee applies, where vF,
the Fermi velocity, depends on the density n through vF =
1.4n1/2108mm/s, where n is expressed in units of 1011cm−2.
Using our calculated lee, we estimate ν to be ∼2 × 104mm2/s
at T = 20 K and n = 1.5 × 1011cm−2 (increasing almost to
106 at higher densities) for 2D GaAs (see Fig. 4) to be com-
pared with the corresponding kinematic viscosity of honey
(mayonnaise) ∼2(6) × 103mm2/s at room temperatures. We
know of no other system, 2D or 3D (and metals or semicon-
ductors or semimetals, including graphene) where the electron
hydrodynamics manifests as clearly and as generically as in
2D GaAs. Finally, we provide one spectacular example of
hydrodynamic effects on a particular property of the GaAs 2D
electron system in Fig. 5, where we calculate the WF ratio,
L/L0 for 2D GaAs, where L0 = (π2/3) × (kB/e)2 is the ideal
free-electron Lorenz number for κ/(σT ), with κ and σ the
electronic thermal and electrical conductivity, respectively. It
is well-known that all metals and Fermi liquids approximately
obey L/L0 ∼ 1 in spite of Fermi liquid interactions, and often

FIG. 4. Calculated viscosity in 2D GaAs for T = 10, 20, 40, and
100 K.
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FIG. 5. Shows the calculated WF ratio (for a T = 0 mobility of
106cm2/Vs) as a function of (a) temperature for two carrier densities
and as a function of (b) density for three temperatures.

the validity (invalidity) of the WF law is identified with the ex-
istence of a Fermi (non-Fermi liquid). We follow Refs. [27,28]

in calculating L/L0 from our calculated le and lee through the
simple but exact formula

L/L0 = lee

lee + le
= ζ

1 + ζ
. (5)

The spectacular failure of the WF law, with an order of
magnitude suppression of the WF ratio is already obvious at
T ∼ 10 K for n ∼ 1011cm−2. Such a dramatic failure of the
WF law, as predicted in our work, would have immediately led
to the discussion of a possible breakdown of the Fermi liquid
theory (even if rs is small), but it is in fact a spectacular ex-
ample of the effect of bulk hydrodynamics, entirely within the
Fermi liquid paradigm, arising simply from the fact that the
2D GaAs electrons become superviscous as the momentum-
conserving mean-free path arising from electron-electron
collisions becomes much shorter than the momentum-
relaxing mean-free path arising from disorder and phonon
scattering.

Conclusion.— We establish 2D GaAs electron systems as
the ideal laboratory system to study viscous hydrodynamic
effects in bulk electron fluids without invoking any finite-size
constrictions or obstructions or imposed geometric controls.
All one needs is to measure the WF ratio in 2D GaAs electrons
in the temperature range of T = 4–40 K using samples of
modest mobilities ∼106cm2/Vs, and we predict a spectacular
suppression of the WF ratio. We emphasize, however, that the
system is still a Fermi liquid, and therefore the WF ratio will
eventually go to unity at low (high) enough temperatures (be-
low 1 K and above 40 K). In fact, the recovery of the WF ratio
to unity at low enough temperatures is a generic property of all
non-Fermi-liquids [29], and any attempt to distinguish Fermi
liquids and non-Fermi liquids based on the measured WF ratio
is doomed to failure since it is incapable of distinguishing
between hydrodynamics and non-Fermi liquids.
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