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Exchange-correlation effect in the charge response of a warm dense electron gas
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The study of warm dense matter, widely existing in nature and laboratories, is challenging due to the interplay
of quantum and classical fluctuations. We develop a variational diagrammatic Monte Carlo method and determine
the exchange-correlation kernel KXC(q; T ) of a warm dense electron gas for a broad range of temperature T
and momentum q. We observe several interesting physics, including the T -dependent evolution of the hump
structure and the large-q tail and the emergence of a scaling relation. Particularly, by deriving an analytical form
for q → ∞, we obtain large-q tails of KXC with high precision. It is shown that the KXC data can be reliably
transformed into real space, which can be directly used in density-functional-theory calculations of real warm
dense matter.
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Introduction. Over the past two decades, extensive research
interests have been devoted to an extreme state of matter
at high temperature and density, called warm dense matter
(WDM). The WDM region occurs in various astrophysical
objects such as giant planet interiors [1–5], brown dwarfs
[6,7], and neutron crusts [8]. Nowadays, it can be routinely
realized and probed in novel high-power laser and accelerator
facilities [9–12]. The electrons in WDM are about to lose
quantum coherence while still demonstrating nontrivial quan-
tum corrections, resulting in a special crossover state between
classical plasma and quantum condensed matter.

Within the local-density approximation treatment, the elec-
trons in WDM are modeled by the warm dense uniform
electron gas (UEG). The UEG only has two parameters, the
density parameter (Wigner-Seitz radius) rs = r̄/aB and the
reduced temperature θ = T/TF, where r̄ is the average in-
terparticle distance, aB is Bohr radius, and TF is the Fermi
temperature. At the high-density limit (rs → 0), the electrons
behave as an ideal Fermi gas; at low density, the Coulomb
potential becomes dominant, eventually resulting in a Wigner
crystal [13–15]. Dimensional temperature ratio θ can be seen
as a quantum degeneracy parameter. In the high-temperature
(θ � 1) and zero-temperature (θ → 0) limits, the UEG has
been well described by the classical plasma theory and the
quantum condensed matter theory, respectively. However, due
to the complicated interplay of electronic correlations, quan-
tum coherence, and thermal fluctuations, the crossover regime
rs ∼ θ ∼ 1, particularly relevant for WDM, is much less un-
derstood.

*kunchen@flatironinstitute.org
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The density (or charge) response function, one of the most
important electronic probes, is measured in many vital di-
agnostic experiments of WDM [16–21]. The random phase
approximation (RPA) well describes the long-range screening
effects and is a reasonable approximation in the weakly in-
teracting regimes. However, it becomes invalid in the WDM
conditions because the RPA response function only accounts
for the Hartree component of the induced potentials [22] and
overestimates the short-range correlations between electrons.
The neglected exchange-correlation (XC) component can be
parametrized by the local field correction (LFC),

G(q, ω) = 1 − 1

vq

[
1

χ0(q, ω)
− 1

χ (q, ω)

]
, (1)

where χ0(q, ω) and χ (q, ω) are the dynamic density re-
sponse functions of noninteracting and interacting systems,
respectively, and vq = 8π/q2 is the long-range Coulomb
repulsion (Rydberg atomic units are used). The LFC en-
codes the structure of effective electron-electron interaction
and is crucial for the understanding of many experimental
phenomena, exemplified by plasmon [11,23], Coulomb and
spin-Coulomb drag effects [24,25], electrical and thermal
conductivities [26,27], stopping power [28,29], and energy
transfer rates [30]. In the time-dependent density func-
tional theory (TDDFT) [22,31,32], the so-called XC kernel,
KXC(q, ω) = −vqG(q, ω), is typically used as an input for
ab initio calculations of ground-state energies and electronic
spectra in real materials. For small and large q, since G(q) ∝
q2, the behavior of G is better described by KXC.

Substantial efforts have been devoted to studying the LFC
of UEG, particularly its static one G(q) ≡ G(q, ω = 0). At
T = 0, in the ground state, analytic properties of the LFC
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in the small- and large-q limits were derived [33–36] and
numerical calculations of G(q) were performed for vari-
ous density parameters by diffusion quantum Monte Carlo
[37,38]. Recently, Chen and Haule developed a variational
diagrammatic Monte Carlo (VDMC) method [39] using renor-
malized Feynman diagrammatic expansion and used it to
obtain accurate results on the static density LFC [39] and spin
LFC [40] for rs � 5. Furthermore, the dynamic LFC was com-
puted by implementing the algorithmic Matsubara integration
with the VDMC [41]. For finite T , calculations of G(q) are
amenable due to the recent development of unbiased path-
integral Monte Carlo (PIMC) methods [42–45]. Dornheim
et al. [46] reported a neural-network representation of G(q)
based on PIMC data and ground-state parametrization [47].
They further gave an analytic parametrization of G(q) within
effective static approximation [48] and used it to describe the
response functions in the WDM regime [49,50].

Many challenges still exist. First, due to the limited pre-
cision of ground-state data, it remains controversial whether
the LFC develops a peak structure near q = 2kF (where kF is
the Fermi momentum), termed the “2kF hump puzzle” [51].
Second, the PIMC methods suffer from the notorious sign
problem [52–54] as the electrons become a degenerate quan-
tum liquid for T < TF [55]. Therefore, our current knowledge
has a significant gap: how the LFC evolves from zero T in the
ground state, via low T relevant for condensed matter physics
and intermediate T corresponding to WDM, and finally to
high T relevant for classical plasma. Third, the PIMC extracts
G(q) from χ (q) via (1), but it is difficult to determine the
large-q LFC because statistical errors in Monte Carlo (MC)
data can easily overwhelm the very weak many-body contri-
bution to χ (q) − χ0(q) for q > 3kF. To develop an efficient
algorithm for large q, it is desirable to analytically derive
the asymptotic properties of G(q) in the large-q limit. In
application, this is particularly important since many TDDFT
algorithms require an XC kernel KXC(r) in real space, and,
without accurate data for large q and analytical forms for
q → ∞, a reliable Fourier transform from KXC(q) to KXC(r)
is extremely difficult due to the Gibbs phenomenon.

In this Letter, we develop the VDMC method for the warm
dense electron gas, which is a generalization of the method in-
troduced by two of us [39]. Inspired by the binary expression
tree in computer science, we introduce an expression-tree rep-
resentation of Feynman diagrams to efficiently and accurately
calculate χ (q). Our VDMC method is reliable for the UEG of
high to intermediate density and at arbitrary temperature, cov-
ering those low-T and large-q regimes where other unbiased
finite-T quantum MC methods are infeasible. From extensive
simulations, we obtain high-precision data of the static LFC in
a broad range of (q, T ) space from the Fermi liquid to WDM
and then to classical plasma. Several interesting physics are
revealed, including the T -dependent evolution of the hump
structure and the large-q tail (Fig. 1) and the emergence of
an asymptotic high-T scaling relation of G(q; rs, T ) (we use
a semicolon to separate intrinsic variables including q, ω,
and r, and parameter variables including rs and T ) in the
dimensionless variable q/

√
T [Fig. 2(a)]. High-precision data

for KXC are obtained up to 14kF, shown in Fig. 2(b). In both
the small- and the large-q limit, KXC(q) saturates to a constant,
nonmonotonically depending on T . Moreover, we show that

FIG. 1. Static local field correction G(q) in the extensive (q, T )
plane for rs = 1. The circles depict VDMC data points for θ =
0.0625, 0.25, 0.4, 1, 2, 4, 8. The cyan squares and dotted line depict
the tendency of the maximum momentum qmax of G(q) versus T .

the asymptotic XC kernel K∞ ≡ KXC(q→∞) is proportional
to the interaction-induced shift of the kinetic energy and de-
rive the analytical form of the coefficient. Using a VDMC,
we compute the kinetic energy accurately and thus K∞ as
a function of T [the inset of Fig. 2(c)]. Combining data of
KXC(q) for q � 14kF and of K∞ for the tail, we show that the
Fourier transform of KXC(q) to real space can be performed
reliably without any freely adjustable parameter [Fig. 2(c)].

Results. We carry out extensive simulations for the three-
dimensional UEG model at a series of temperatures θ =
0.0625, 0.25, 0.4, 1, 2, 4, 8. Hereby, we focus on parameter
rs = 1, which is the most typical WDM density, and we also
simulate rs = 2 for θ = 4, 8 to illustrate the rs-independent
scaling relation. We accurately determine the static LFC
G(q; T ) up to q/kF = 14 (Fig. 1), more than four times larger
than the previous studies [46,58]. Accordingly, the XC kernel
KXC(q; T ) is obtained in Fig. 2(b).

Our data exhibit several profound features of the T - and
q-resolved LFC. For any given T , there is a unique momentum
qmax corresponding to the local peak in G(q), which sepa-
rates long-range (small-q) from short-range (large-q) physics.
Figure 1 shows that the peak broadens and shifts to the larger
momentum as T increases, and the inset of Fig. 2(a) shows
qmax as a function of T . In the high-T limit, qmax is con-
trolled by the thermal de Broglie wavelength λth = √

4π/T
as qmax ≈ 7.6λ−1

th . As T decreases, the value of qmax gradually
decreases and is no longer dominated by λth for T � 2TF,
eventually converging to 
2kF at zero T . We further ob-
serve that in the evolution of the XC kernel KXC(q) with
T [Fig. 2(b)], a local minimum appears at T � 0.4TF and
becomes sharper and closer to q 
 2kF as T → 0. These nu-
merical results confirm the “2kF hump” of the ground-state
UEG postulated in various theoretical predictions [59–62].
Moreover, the nontrivial T dependence of qmax and the smear-
ing out of the sharp minimum in KXC at T ∼ TF reflect the
intense competition between quantum and thermal fluctua-
tions in the WDM regime.

In addition, with increasing T , the large-q LFC evolves
from a positive tail at low T to a negative tail for T � 0.4TF.
Holas [35] predicted the asymptotic behavior G(q) ∝ q2 for

L081126-2



EXCHANGE-CORRELATION EFFECT IN THE CHARGE … PHYSICAL REVIEW B 106, L081126 (2022)

FIG. 2. (a) Rescaled static LFC as a function of q/
√

T . The data points with solid lines are for rs = 1 and θ = 0.25, 0.4, 1, 2, 4, 8, and
ones with dashed lines are for rs = 2 and θ = 4, 8. As T → ∞, the LFC data tend to collapse to a universal curve that depends on q/

√
T , and

is covered in the pink shadow. The inset shows the evolution of qmax from 
2kF in the zero-T limit to ≈7.6λth in the high-T limit. (b) The
XC kernel KXC(q) for different temperatures and rs = 1. The tail of either curve converges to a constant K∞ that is explicitly calculated by
the VDMC as Eq. (3), and the strip marks its value and error. The inset shows the evolution of KXC(q = 0, T ). Our data are consistent with
the parametrized function [56] (blue line). (c) The XC kernel of UEG in real space with the delta-peaked term subtracted. The inset shows
the interaction-induced shift of the kinetic energy versus temperature. Our data is approaching the high-T approximation [57] (blue line)
for θ > 1.

q → ∞ at zero T , where the prefactor is proportional to the
change in the interaction-induced shift of the kinetic energy
δEk and is positive for all rs. However, no analytical formula
currently exists for finite T . Qualitatively, the evolution of the
LFC tail reflects the sophisticated competition of Coulomb
repulsion, exchange effects, and thermal motion.

We argue that in the high-T limit, the entire LFC curve is
described by an asymptotic scaling function depending on a
single dimensionless parameter q/

√
T , independent of rs, as

lim
T →∞

|fixed αG(q; rs, T ) = G̃(α), α = q/
√

T . (2)

The argument is as follows: For UEG, there are two charac-
teristic length scales, i.e., λth and rs. When T → ∞, the only
detectable length scale is λth since λth � rs. Indeed, Fig. 2(a)
demonstrates that as T increases, the LFC tends to collapse
into a universal curve as Eq. (2).

We now turn to the XC kernel. Figure 2(b) shows that
KXC(q) converges to a nonmonotonic T -dependent constant
for both q → 0 and q → ∞. It is known that the uniform XC
kernel KXC(q = 0) is proportional to the second derivative of
the XC free energy, given by the compressibility sum rule
[63]. Therefore, we compare our KXC(q = 0) data with the
values from the recent XC free-energy parametrization [56]
in the inset of Fig. 2(b). It is shown that they are consistent
for θ � 2 within error bars while having a slight deviation for
θ � 4.

The large-q behavior of the XC kernel is highly nontrivial,
as also discussed in the LFC tail. Based on the large-q ex-
pansion of the polarization function 	 related to the density
response function by χ (q, ω) = [	−1(q, ω) + vq]−1 (details
are given in the Supplemental Material [64]), we derive the
asymptotic formula of the large-q XC kernel for finite T as

lim
q→∞ KXC(q; rs, T ) = K∞(rs, T ) + O(q−2), (3)

with K∞ = −(32π2r6
s /27)δEk. This analytic formula gener-

alizes the zero-T one [35] and describes that the convergent
constant K∞ is controlled by the many-body contributions
of the kinetic energy. Note that Eq. (3) still holds for the

dynamic XC kernel since the frequency dependence only
exists in the subleading and higher orders. We explicitly cal-
culate the kinetic energies by the VDMC to extract K∞ for
various temperatures, and the results are consistent with our
large-q KXC data within error bars, as shown in Fig. 2(b).
Furthermore, the inset of Fig. 2(c) displays an interesting
nonmonotonic behavior: as T increases, δEk decreases from
a positive value for low T to negative for θ � 0.4 and finally
approaches zero asymptotically. At zero T , δEk is always
positive because electron repulsion broadens the ground-state
momentum distribution. However, at high enough tempera-
tures, the correlation effects would lead to the narrowing of the
momentum distribution [57,65,66]; meanwhile, the Hartree-
Fock term −(3/2π )5/3θ/(3r4

s ) dominates the XC contribution
to the kinetic energy so that δEk < 0. Remarkably, we find
that the high-T approximation [57], including the Hartree-
Fock and the Montroll-Ward contributions, describes well the
nonmonotonic T dependence of δEk for θ � 1. The formula
(3) combined with the behavior of δEk versus T explains
the T -dependent evolution of the LFC/XC kernel tail and
matches the scaling relation in the high-T limit.

Combining our numerical data and the analytical tail,
we perform interpolation and obtain a controlled represen-
tation of the XC kernel for overall momentum [the solid
line of Fig. 2(b)]. In practice, we use spline interpolation to
fit piecewise cubic polynomials to q � qcut data (the cutoff
momentum qcut excludes the tail and depends on the temper-
ature). We then perform the least-squares fits to q > qcut data
via the ansatz KXC(q) = K∞ + a/q2, where K∞ is fixed by
δEk data and a is the fitting parameter. The overall KXC(q) en-
ables a Fourier transform to the real-space XC kernel KXC(r)
without relying on any ansatz of KXC(q). The constant tail in
KXC(q) translates to a contact term K∞δ(3)(r) in real space,
while the remaining part of the XC kernel transforms into a
smooth function of the distance r, as shown in Fig. 2(c). This
scheme allows us to accurately represent KXC(r), which is a
key input in TDDFT calculations for real materials.

Methods. Diagrammatic expansion is used to perturba-
tively calculate a quantity as a series of integrals which can

L081126-3



HOU, WANG, HAULE, DENG, AND CHEN PHYSICAL REVIEW B 106, L081126 (2022)

be visualized as Feynman diagrams. It allows us to simu-
late quantities immediately in the thermodynamic limit by a
Markov-chain process that stochastically samples diagrams
and internal variables. Such diagrammatic MC methods have
found successful applications in many physical problems
[67–92]. For UEG, the expansion in the bare Coulomb in-
teraction is divergent and needs to be transformed into a
more appropriate power expansion, as explained below. We
use the variational scheme [39,93], in which the emergent
low-energy physics is taken into account at the lowest or-
der, and the corrections are perturbatively added, leading
to rapid convergence. We develop a VDMC method, which
has a generic algorithmic structure and an optimized effi-
ciency with the help of an expression-tree representation of
diagrams.

Motivated by the Coulomb screening effects, we introduce
a variational inverse screening length λq following Ref. [39] to

reexpand the bare interaction 8π
k2 = 8π

k2+λ2
q

∑∞
n=0(

λ2
q

8π
8π

k2+λ2
q
)n. In

the VDMC, λq is q dependent and optimized to achieve a rapid
convergence according to the principle of minimal sensitivity
[94]. To further speed up the convergence, we insert the Fock
subdiagram into the bare electron propagator to recover the
screened Hartree-Fock approximation in the first order. Mean-
while, we add order-by-order chemical-potential counterterms
to fix the Fermi surface at each order. Within this optimized
expansion, we can obtain reliable infinite-order results of arbi-
trary quantities without very large truncation order N , which
avoids the exponential scaling of the computation time with
order. Figure 3(a) shows the static polarization 	(q), which
rapidly converges at the optimal λq. In practical simulations,
we choose λq as piecewise constants for q � 6kF and q �
6kF, which is already sufficient for rapid convergence. We
compute the Feynman diagrams up to order N = 5, which
contain about 1200 diagrams. Our calculations suggest that,
at least for UEG, N = 5 is already sufficient for us to reliably
extrapolate 	(q) to infinite order. The description of details,
including the topology and number of Feynman diagrams and
numerical approach, can be found in Ref. [39].

A major challenge of the VDMC is how to generate
and group a large number of Feynman diagrams and ef-
ficiently compute their weights. By sign-structure analysis
of scattering amplitudes in diagrams constrained by the
crossing symmetry and the conservation law [95], we can
optimize the internal-variable arrangements and construct the
sign-canceled diagram groups to alleviate the sign problem
significantly. Inspired by the binary expression tree in data
structures, we develop a universal expression-tree represen-
tation of diagrams implemented by a diagram minicompiler
with a three-layer infrastructure. We are improving the orig-
inal code for readability and usability and will report details
elsewhere.

By the VDMC method, we obtain more accurate LFC
data over a wider range of (q, T ) than the state-of-the-art
PIMC [46], as shown in Fig. 3(b). We note that for the LFC
at large momenta, the PIMC cannot provide reliable results
because the statistical errors of data of χ (∼1/q2) overwhelm

FIG. 3. (a) Static polarization scaled by the density of states at
the Fermi level NF at q = 3kF versus truncation order N for θ = 2
and rs = 1. All λ choices lead to the same extrapolated value, and
the optimal λ for the fastest convergence is about 1.0 in this case.
(b) LFC G(q) at θ = 2 and rs = 1 for the VDMC (red circles), the
PIMC [46] (blue squares), and the finite-temperature version [96] of
the STLS approximation [97] (black line). The STLS approximation
is a widely used self-consistent scheme for an approximate treatment
of the static LFC.

χ − χ0 (∼1/q4) [64]. Here, based on the large-q expansion
of χ (q) [64], we identify each polarization diagram with a
tail-decaying behavior q−
, where 
 is the least number of the
propagator lines with flowing q. Hence, we optimally organize
the external momentum variable of each diagram to make
the integrand have the same tail behavior as the integral so
that the VDMC can directly calculate χ − χ0 by efficiently
sampling each diagram with a reweighting factor q
. For com-
pleteness, we mention that a VDMC simulation for a single
rs − θ system parameter takes O(104) CPU (single-threaded
process) hours.

Discussion. In summary, we present a systematic and
generic VDMC approach for warm dense electron gas and
obtain high-precision results for the LFC/XC kernel over
a broad range of momentum and temperature. The VDMC
allows for accurate and efficient calculation of various quan-
tities directly in the thermodynamic limit at arbitrary temper-
ature, beyond the reach of state-of-the-art path-integral-based
MC methods. Our VDMC calculations have immediate prac-
tical applications in exploring various physical systems. For
example, we obtain the first ab initio result for the real-space
XC kernel, which enables finite-T TDDFT calculations for
real electronic systems. A natural continuation of this work is
to study the spin-dependent correlations and thermodynamic
functions and construct the frequency-dependent LFC.
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