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This Letter theoretically validated that the ω = 0 component of a photoexcited Drude peak in one-dimensional
Mott insulators is nonzero only when a finite amount of charge fluctuations is included. Here, we define
charge fluctuations as annihilations and creations of photoexcited elementary particles, that are, holons (Hs) and
doublons (Ds). In contrast, when the electron on-site repulsion, U , is infinite, such fluctuations are completely
suppressed, and the H and D behave, such as rigid balls, leading to a vanishing ω = 0 component. Such behaviors
inspire us to name them as “quantum clackers.” Moreover, we demonstrated that the effective broadenings of the
finite-frequency components of the Drude peak are affected by charge fluctuations and carrier density. Finally,
we discovered that such broadenings can be estimated using the group velocity of the relative motion of an H
and a D as would be predicted from a colliding picture of the two particles.

DOI: 10.1103/PhysRevB.106.L081119

Introduction. Recent advancements in ultrafast laser tech-
nology for controlling the temporal width, wavelength, and
phase of a pulse have facilitated the creation of tunable and
novel quantum states for various materials [1–4]. Among such
studies, photoinduced insulator-metal transition phenomena
in strongly correlated electron systems have been positioned
as a fundamental issue that has been attracting extensive atten-
tion for a long time [5–18]. Many experimental [19–29] and
theoretical [30–45] studies have reported the significance and
utility of photoexcited pairs of a holon (H) and a doublon (D)
in the descriptions of the low-energy optical excitations. How-
ever, these studies were unable to fully clarify the microscopic
picture of the electric transport induced by such photoexcited
carriers. In this Letter, we theoretically discuss this point
based on a one-dimensional (1D) Mott insulator, paying spe-
cial attention to the motion of the holon-doublon (HD) pair.

In general, a Drude weight, defined as a direct current com-
ponent of electrical or optical conductivity, is a useful quantity
for characterizing metals or insulators [46]. In the case of
photoinduced phenomena, we can observe this quantity as
the nonzero signal at approximately zero frequency of pump-
probe spectra at early timescales. Currently, numerous studies
have revealed the features of Drude weights of Mott insulators
[47–59]. In addition to these previous studies, herein, we focus
on two important factors that determine the Drude weights:
carrier density associated with the strength of pumping lights
and the degree of charge fluctuations corresponding to the HD
pair creations and annihilations.

Starting from a Mott insulator ground state with no HD pair
in a 1D N site ring as shown in Fig. 1(a), we focus on the case
of a single photodoped HD pair, which is schematically shown
in Fig. 1(c). We have also included the case of a single doped
hole for comparison in Fig. 1(b). An induced metallic state is

characterized by a carrier of a single HD pair for the former
and a single hole for the latter. Here, our theoretical suggestion
is that the metallic feature of the photodoping carriers with fi-
nite U is completely different from that with large U . Here, U
is the electron mutual repulsion on the same site, namely, the
so-called Hubbard U , which yields a Mott insulator. Another
important energy is the degree of electron itineracy for which
the electron transfer energy between the nearest-neighboring
sites T is chosen. In the case of U � T , an H and a D seldom
exchange their spatial positions as illustrated in Fig. 1(c). For
such an exchange, we need an annihilation and a creation of
the pair, which leads to the matrix element of the order of
T 2/U . Since the two carriers should move in opposite direc-
tions under a uniform electric field, such a forbidden exchange
leads to repeated collisions between H and D. This situation
corresponds to vanishing Drude weight or DC conductivity. In
contrast, in the case of U ∼ T , such restrictions are relaxed in
the sense that they penetrate each other owing to the tunneling
effect and provide a finite Drude weight, in turn. Such behav-
iors, namely, completely rigid balls for U � T and partially
transparent balls for U ∼ T , are like “quantum clackers.”

To confirm the above hypothesis, we theoretically evaluate
the Drude weights of photoexcited states using two effective
models based on the charge model [60]. The charge model
has been introduced as an effective model of a 1D half-filled
extended Hubbard model under the periodic boundary con-
dition and spin-charge separation picture [61–70]. Although
this model neglects the spin degrees of freedom, it precisely
treats the charge fluctuations, namely, the creations and an-
nihilations of the HD pairs. Consequently, we can reproduce
low-energy photoexcited properties of the original Hubbard
model [60,71,72]. Another important point is the choice of
the system size (N). Based on the picture of colliding an H
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FIG. 1. Schematic of metallic states in a 1D Mott insulator in-
duced by hole doping and photodoping. The wavy line represents
irradiated light. U and T denote the strength of the on-site Coulomb
interaction and transfer energy, respectively. The curved arrows rep-
resent the motions of H and D. The electric field of the probe pulse
is denoted as E .

and a D, we also think that the number density of the HD
pairs is essential. However, at the present stage, it is techni-
cally hard to analyze the effect of the density as we change
both the system size and the pair number simultaneously. We,
therefore, only change N , whereas keeping the pair number
at one and investigate the dependence on the density that is
defined as nc = 1/N . Throughout this Letter, we assume the
absolute zero temperature and set h̄ = e = c = a = 1, where
a is a lattice constant.

Formulations. We first introduce the charge model defined
for a ring of even N sites under a zero center-of-gravity
momentum frame. According to our previous studies [60,71],
the model Hamiltonian and charge-current operator J can be
expressed by the field theoretical description of hard-core
bosons (Uc → +∞) as follows:

H ≡ HT + HU + HV + Uc

N∑
j=1

(d†
j d†

j d jd j + h†
j h

†
j h jh j

+ d†
j d jh

†
j h j ), (1)

HT ≡ −T
N∑

j=1

(d†
j+1d j + h†

j+1h j + H.c.)

−
√

2cST
N∑

j=1

(d†
j+1h†

j + h†
j+1d†

j + H.c.), (2)

HU ≡ U

2

N∑
j=1

(
n(d )

j + n(h)
j

)

HV ≡
∑

α

Vα

N∑
j=1

(
n(d )

j+αn(d )
j + n(h)

j+αn(h)
j − n(d )

j+αn(h)
j

− n(h)
j+αn(d )

j

)
, (3)

J ≡ iT
N∑

j=1

(d†
j+1d j − h†

j+1h j − H.c.)

+ i
√

2cST
N∑

j=1

(d†
j+1h†

j − h†
j+1d†

j − H.c.). (4)

Here, h j (h†
j ) and d j (d†

j ) are the annihilation (creation)
operators at the jth site of an H and a D, respectively.
n(h)

j = h†
j h j , n(d )

j = d†
j d j , and h(†)

N+1 = h(†)
1 (d (†)

N+1 = d (†)
1 ). Vα ≡

V/α is the αth nearest-neighbor Coulombic energy. In this
Letter, we set cS = 0.82, based on our previous works
[60,71,72]. cS is a kind of correction factor, which is re-
lated to the spin degrees of freedom of an original 1D
half-filled Hubbard model. The Uc term is equivalent to d2

j =
h2

j = (d†
j )2 = (h†

j )
2 = d jh j = 0, and conventional bosonic

commutation relations, [dj, d†
k ] = [h j, h†

k] = δ j,k , [d j, dk] =
[h j, hk] = [d j, hk] = 0, and [d†

j , d†
k ] = [h†

j , h†
k] = [d†

j , h†
k] =

0 hold. Note that we need not explicitly treat the Uc term in
actual calculations when we prepare basis states appropriately.

Defining an operator of translating one site to the right as
TR, parity inversion as P , and charge conjugation as C, we first
introduce a symmetrized bare basis,

|r±
M〉 ≡ 1√

N

N−1∑
l=0

T l
R(1 ± P )(1 ± C)

M∏
pi 	=q j , i, j=1

d†
pi

h†
q j

|0〉, (5)

where the sign selections on the right-hand side are limited
to (+,+) and (−,−) for |r+

M〉 and |r−
M〉, respectively, and M

denotes the number of HD pairs. Here, pi and q j are the ith
and jth positions of D and H, respectively. The Mott-insulator
ground state belongs to the (+,+) subspace, whereas the
photoexcited state starting from it belongs to the (−,−) sub-
space owing to P†JP = C†JC = −J and P†HP = C†HC =
H . The projection operator with a fixed M subspace is defined
as

Pλ
M ≡

∑
rλ

M

∣∣rλ
M

〉〈
rλ

M

∣∣ (λ = ±). (6)

Next, we define our Hamiltonian using this basis set. In
this Letter, we select the M = 1 subspace (the subspace of
1-HD-pair states) and prepare two Hamiltonians. The first
Hamiltonian is that of the pure HD model without charge
fluctuations [32,73], namely, H in the absence of the second
term of Eq. (2), whereas the second Hamiltonian is that of
the extended HD model with charge fluctuations. Regarding
the latter model, we explain its details later. After solving a
Hamiltonian in each case, we obtain corresponding eigenen-
ergies and eigenfunctions, E±

μ and |�±
μ 〉, respectively. Here,

μ takes a number from 1 to (N/2 − 1) for |�−
μ 〉 and from

1 to (N/2) for |�+
μ 〉, and is related to the relative wave

number of the DH motion kμ which is roughly estimated as
kμ = 2πμ/N . We can then evaluate the optical conductivity
spectrum in a low-energy region with artificial broadening γ

and ωμ′μ ≡ E+
μ′ − E−

μ ,

σμ(ω) = Dμ

π

γ

ω2 + γ 2
+

N/2∑
μ′=1

γ

Nωμ′μ

( |〈�+
μ′ |J|�−

μ 〉|2
(ω − ωμ′μ)2 + γ 2

+ |〈�+
μ′ |J|�−

μ 〉|2
(ω + ωμ′μ)2 + γ 2

)
. (7)
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FIG. 2. Optical conductivity spectra of the photoexcited states
of the pure HD model for V = 0 and γ = 0.05T . (a) σμ(ω) at
μ = N/8 for the system size of N = 16 (red), N = 32 (green), and
N = 64 (blue). (b) σμ(ω) at N = 64 for 1 � μ � N/2 − 1. The gray
horizontal line corresponds to the same spectrum with N = 64 in
(a). The black lines in (b) exhibit ω = ±(2m − 1)(π/N )v−

g (kμ) for
m = 1–5.

In the first term, Dμ is the so-called Drude weight, defined as

Dμ ≡ −π

N
〈�−

μ |HT |�−
μ 〉 − 2π

N

N/2∑
μ′=1

|〈�+
μ′ |J|�−

μ 〉|2
ωμ′μ

, (8)

and the second term corresponds to the finite-frequency part of
the low-energy excitations. From here on, we refer to the first
and second terms as the zero-frequency Drude peak (ZFDP)
and the finite-frequency Drude peak (FFDP), respectively.
The above formulations in Eqs. (7) and (8) can be derived
within the framework of the linear-response theory when one
assumes the initial equilibrium state as a certain photoexcited
state, which corresponds to |�−

μ 〉 [53]. Here, we have two
comments on Eqs. (7) and (8). First, in the summation with
respect to μ′ in the second term of each of them, the terms with
ωμ′μ = 0 are excluded by definition. This goes back to their
derivations based on the linear-response theory. We can, con-
sequently, perform the summations without any divergence.
Second, because of the restriction of the calculation subspace,
a type of conservation law, the f -sum rule, should be satisfied
as

Kμ ≡ lim
γ→0+

∫ ∞

−∞
dω σμ(ω) = −π

N
〈�−

μ |HT |�−
μ 〉. (9)

Pure HD model. First, we investigate the Drude weights in
the pure HD model. In this model, we restrict the subspace to
that of M = 1, switching off the charge fluctuations, which is
justified for U/T = ∞. In more detail, the term of HD anni-
hilation and creation in the Hamiltonian, namely, the second
term of Eq. (2) is set to zero.

In the case of V = 0, we can obtain the analytic solu-
tions for eigenenergies and eigenfunctions [72]. The resulting
spectra σμ(ω) are shown in Fig. 2(a) for μ = N/8 as an
example. In the pure HD model, the eigenenergy is derived
as E−

μ = U − 4T cos(kμ) from Eqs. (1) and (2). Since the

above-mentioned kμ is π/4, this is located at the first quarter
of the band [see Fig. SM4(a1) in the Supplemental Ma-
terial (SM) [74]]. From the f -sum rule in Eq. (9), Kμ =
(4πT/N ) cos(2πμ/N ) can be derived, the signature of σμ(ω)
being both positive and negative. In the figure, the FFDPs
can be clearly seen, whereas the ZFDPs of the photoexcited
states do not appear. In fact, from the numerical evaluation
of the Drude weight in Eq. (8), we find that Dμ vanishes
for every μ at machine precision as shown in Fig. SM3 of
the Supplemental Material (U/T = ∞) [74], which indicates
that the collision between an H and a D is essential in the
understanding of the Drude peak [75].

Concerning the FFDPs, the spectral peaks and dips rig-
orously appear at ω = ωμ′μ for γ → +0. The meaning of
the overall spectral shape is described in Sec. I of the
SM [74]. Substituting μ′ = μ,μ ± 1, μ ± 2, . . . into ωμ′μ,
ωμ′μ = ±(2m − 1)(π/N )v−

g (kμ) for m = 1, 2, . . . is satisfied
in the case of N � 1(see Eq. (SM19) in the SM [74]). Here,
v−

g (kμ) ≡ ∂ε−
μ /∂kμ with kμ = 2πμ/N denotes the group ve-

locity of a relative motion of an odd-parity single HD pair.
These frequencies coincide with the positions of the afore-
mentioned dips and peaks as shown in Fig. 2(b), although the
formers are approximations for an infinite N and only give
averaged values for each pair of a dip and a peak. Since the
mean free path of the DH pair equals N/2, we can estimate
τ ∗ ∼ (N/2)/|v−

g (kμ)| as an effective lifetime for the DH col-
lision or scattering. The effective broadening defined as π/τ ∗
is, consequently, evaluated as 2π |v−

g (kμ)|/N , which are spec-
ified as the lengths of the horizontal arrows in Fig. 2(a). As
seen in the figure, we can confirm coincidences between the
estimated effective broadenings and the peak positions. We
expect that a Drude peak width will be well defined for a fixed
pair-number density nc in the limit of infinite N . Although
it is still difficult to determine it in the present calculation,
this result suggests that the broadening of the Drude peak is
governed by the collision of an H and a D.

For comparison, we briefly comment here on
hole-doped 1D systems at a low-density limit. An
effective model with N sites can be obtained by
the Hamiltonian H̃ = −T

∑N
j=1(h†

j+1h j + h†
j h j+1) and

charge-current operator J̃ = −iT
∑N

j=1(h†
j+1h j − h†

j h j+1).
First, in the case of a single holon, the eigenmodes
are |μ〉 = (1/

√
N )

∑N
j=1 exp(i2πμ j/N )h†

j |0〉 and Eμ =
−2T cos(2πμ/N ) for −N/2 + 1 � μ � N/2. Using |μ〉
as |�−

μ 〉 in Eq. (8), the photoexcited ZFDP is derived as
D̃μ = −π〈μ|H̃T |μ〉/N = (2πT/N ) cos(2πμ/N ) [76]. This
obviously finite D̃μ at finite sizes is a striking difference
from the above vanishing Dμ. Furthermore, we can derive
the same quantity for the case of two holons. We select
the eigenmode as |ν〉 = 1/

√
N

∑
li h†

l+ih
†
l fν (i)|0〉, where

l = 1 ∼ N , i = 1 ∼ (N − 1), and fν (i) = √
2/N sin(πνi/N ).

Using this selection, we find D̃ν = (4πT/N ) cos(πν/N ),
which does not vanish for general ν. This property is
intuitively understood when we recall that in this case, all the
carriers move in the same direction without collision.

Extended HD model. We subsequently investigate the ex-
tended HD model to incorporate a finite amount of charge
fluctuations. This model is derived using a third-order per-
turbation of a charge model based on the Schrieffer-Wolff
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FIG. 3. Optical properties of the third-order perturbative effec-
tive model (extended HD model) obtained from a charge model.
(a) U dependency of Kμ with V = 0 at N = 64. (b) U dependency
of Dμ with V = 0 at N = 64. (c) σμ(ω) for U = 10T , V = 0, and
γ = 0.05T at μ = N/8. The colors are corresponding to the system
size of N = 16 (red), N = 32 (green), and N = 64 (blue). The whole
μ dependency is shown in (d) for N = 64. The gray horizontal line
corresponds to the same spectrum with N = 64 in (b). The black lines
exhibit ω = ±(2m − 1)(π/N )v−

g (kμ) for m = 1–5.

transformation method [77–82]. The quantitative reliability
of this method is discussed in Sec. III of the SM [74]. To
compare the results with those without fluctuations, we again
focus on the photoexcited states associated with the M = 1
subspace in the absence of V . In this case, all the quantities of
ωμ′μ ≡ E+

μ′ − E−
μ , 〈�−

μ |HT |�−
μ 〉, and 〈�+

μ′ |J|�−
μ 〉 in Eqs. (7)–

(9) are automatically corrected in the order of 1/U 2 [82]. This
means that we can tune the degrees of charge fluctuations by
varying the U value.

Consequently, the key results, including the charge fluctua-
tions with V = 0 are summarized in Figs. 3(a)–3(d). There are
two significant differences from the preceding results due to
the finite U . First, Kμ determined by the f -sum rule is positive
for U � 20T as shown in Fig. 3(a). Second, Dμ is positive and
finite as seen in Fig. 3(b) and SM3 [74]. For example, even the
largest U case, namely, the case of U = 100T , also provides
finite Dμ. Since smaller U values provide stronger charge
fluctuations, the result in Fig. 3(b) and SM3 indicates that
strong charge fluctuations significantly enhance the ZFDPs of
the photoexcited states. This enhancement is clearly seen in
the spectra in Figs. 3(c) and 3(d). We can also estimate the ef-
fective broadenings of FFDPs utilizing the same method used
for the previous τ ∗ and confirm that the estimated broadenings
reproduce the intervals between the peaks quantitatively as
shown in Fig. 3(c). We emphasize that the group velocity used
here is strongly modified from that without charge fluctuations

-20
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 60

-0.5 -0.25  0  0.25  0.5
ω/T

σ μ
(ω

) μ=N/8
Vα≥4=0
V=2.4T
U=10T

FIG. 4. σμ(ω) calculated by the extended HD model with U =
10T , V = 2.4T , Vα�4 = 0, N = 64, and γ = 0.05T at μ = N/8 (blue
line). The red line is the corresponding result obtained for the pure
HD model. The black dashed line for V = 0, which is the same as
the blue line in Fig. 3(c), is shown for comparison.

as shown in Sec. II of the SM [74]. In this sense, we can state
that the FFDP is also affected by the charge fluctuations.

Finally, we briefly comment on the results of the finite V .
As is already known, a long-range Coulomb interaction V
(V > 0) induces an attractive interaction between an H and
a D and makes an HD bound state when the attraction is suf-
ficiently large [29,72]. Meanwhile, the whole spectral shape
changes drastically. It is, therefore, worth investigating to con-
firm whether the aforementioned findings obtained for V = 0
also explain the case of finite V . In our numerical calculations,
the resulting features of Kμ, Dμ, and σμ(ω) for the finite V are
almost qualitatively the same as those for V = 0. We show one
typical example of V = 2.4T and Vα�4 = 0 with U = 10T in
Fig. 4. Note that μ is N/8, which means that the initial state is
located within the continuum of a free HD pair. Here, the blue
(red) line shows the spectrum from the extended (pure) HD
model. As an overall feature, the spectrum from the extended
HD model shows qualitatively similar features to the corre-
sponding one with V = 0 (dashed black line). In contrast, we
note that the weight at ω = 0 is enhanced from that for V = 0,
which is interpreted as an increased HD exchange rate due to
the reduction of the gap energy caused by finite V . Since this
parameter is the best set in our previous work of reproducing
the optical spectra of a typical 1D Mott insulator ET-F2TCNQ
[72], the present result provides an interpretation of future
pump-probe measurements for this material.

Summary. The nature of photoexcited Drude weights in the
1D Mott insulators was theoretically evaluated using the two
effective models, both of which are established based on the
spin-charge separation picture. In terms of the linear-response
spectra with a certain initial photoexcited state σμ(ω), we
estimated the properties of both the ZFDPs and the FFDPs
associated with a single photocreated HD pair. Consequently,
the former is only finite and enhanced in the presence of
charge fluctuations. We also estimated the typical broadenings
using the group velocity of the relative motion of a single HD
pair for the latter.

As a next step toward the complete physical understanding
of the photoinduced metallic state observed in the pump-
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probe spectra of Mott insulators, we will evaluate other purely
electronic many-body effects, such as the effects of spin de-
grees of freedom and strong excitations (nonlinear responses),
in the near future. Such further exploration will deepen
our understanding of the complicated many-body metallic
states appearing in the pump-probe spectra of a 1D Mott
insulator.
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[40] Z. Lenarčič and P. Prelovsěk, Phys. Rev. Lett. 111, 016401
(2013); Phys. Rev. B 90, 235136 (2014).

[41] E. Iyoda and S. Ishihara, Phys. Rev. B 89, 125126 (2014).
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[80] H. Eskes and A. M. Oleś, Phys. Rev. Lett. 73, 1279 (1994).
[81] A. L. Chernyshev, D. Galanakis, P. Phillips, A. V. Rozhkov, and

A.-M. S. Tremblay, Phys. Rev. B 70, 235111 (2004).
[82] The details of the derivation are provided in Sec. II of the SM.

Correction: Two occurrences of the letter T in the sixth
paragraph below Eq. (9) were set incorrectly during the proof
production cycle and have been fixed.

L081119-6

https://doi.org/10.1103/PhysRevLett.111.016401
https://doi.org/10.1103/PhysRevB.90.235136
https://doi.org/10.1103/PhysRevB.89.125126
https://doi.org/10.1103/PhysRevB.92.201104
https://doi.org/10.1103/PhysRevLett.122.077002
https://doi.org/10.1103/PhysRevB.102.165136
https://doi.org/10.1103/PhysRevB.104.085122
https://doi.org/10.1103/PhysRev.133.A171
https://doi.org/10.1103/PhysRevLett.65.243
https://doi.org/10.1103/PhysRevB.42.10807
https://doi.org/10.1103/PhysRevB.44.6909
https://doi.org/10.1103/PhysRevB.52.5617
https://doi.org/10.1103/PhysRevB.59.1825
https://doi.org/10.1103/PhysRevB.70.205129
https://doi.org/10.1143/JPSJ.74.2671
https://doi.org/10.1103/PhysRevB.77.161101
https://doi.org/10.1103/PhysRevB.79.195121
https://doi.org/10.1103/PhysRevLett.110.126401
https://doi.org/10.1103/PhysRevB.90.155104
https://doi.org/10.1103/PhysRevB.89.125123
https://doi.org/10.1103/PhysRevB.103.L201116
https://doi.org/10.1103/PhysRevB.100.235134
https://doi.org/10.1143/ptp/5.4.544
https://doi.org/10.1063/1.1704046
https://doi.org/10.1063/1.1704281
https://doi.org/10.1080/00018737900101375
https://doi.org/10.1088/0022-3719/14/19/010
https://doi.org/10.1142/S0217979291000055
https://doi.org/10.1088/0034-4885/58/9/002
https://doi.org/10.1103/PhysRevB.41.2326
https://doi.org/10.1103/PhysRevLett.64.1831
https://doi.org/10.1103/PhysRevB.43.8401
https://doi.org/10.1103/PhysRevB.102.245114
https://doi.org/10.1103/PhysRevB.103.045124
https://doi.org/10.1103/PhysRevB.54.R17269
http://link.aps.org/supplemental/10.1103/PhysRevB.106.L081119
https://doi.org/10.1103/PhysRev.149.491
https://doi.org/10.1103/PhysRevB.37.9753
https://doi.org/10.1103/PhysRevB.50.17980
https://doi.org/10.1103/PhysRevLett.73.1279
https://doi.org/10.1103/PhysRevB.70.235111

