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The Hubbard and Su-Schrieffer-Heeger (SSH) Hamiltonians are iconic models for understanding the quali-
tative effects of electron-electron and electron-phonon interactions, respectively. In the two-dimensional square
lattice Hubbard model at half filling, the on-site Coulomb repulsion U between up and down electrons induces
antiferromagnetic (AFM) order and a Mott insulating phase. On the other hand, for the SSH model, there is an
AFM phase when the electron-phonon coupling λ is less than a critical value λc and a bond order wave when
λ > λc. In this Letter, we perform numerical studies on the square lattice optical Su-Schrieffer-Heeger-Hubbard
Hamiltonian, which combines both interactions. We use the determinant quantum Monte Carlo method which
does not suffer from the fermionic sign problem at half filling. We map out the phase diagram and find that
it exhibits a direct first-order transition between an antiferromagnetic phase and a bond-ordered wave as λ

increases. The AFM phase is characterized by two different regions. At smaller λ the behavior is similar to
that of the pure Hubbard model; the other region, while maintaining long-range AFM order, exhibits larger
kinetic energies and double occupancy, i.e., larger quantum fluctuations, similar to the AFM phase found in the
pure SSH model.

DOI: 10.1103/PhysRevB.106.L081114

Introduction. Electron-electron and electron-phonon inter-
actions play important roles in determining the ground state
properties of many-body systems. Over the past decades,
much computational effort has been put into studying sys-
tems that feature one or the other of these interactions. One
of the most widely used models to study the effect of an
electron-electron interaction with on-site repulsion U is the
Hubbard model [1] which exhibits metallic, ferromagnetic,
antiferromagnetic (AFM), and superconducting (SC) orders,
as well as intricate inhomogeneous spin and charge patterns,
depending on U and the doping [2,3]. The physics of the
square lattice Hubbard model bears a remarkable resemblance
to that of the cuprate superconductors. Two of the most
commonly studied electron-phonon Hamiltonians are the Hol-
stein [4] and the Su-Schrieffer-Heeger (SSH) [5] models.
Their fundamental difference is that in the former, electrons
and phonons interact on a single site, while in the latter,
the electron-phonon interactions occur on the bonds, i.e., in
the tunneling term. The Holstein interaction is widely used
to explore polaron and charge-density-wave (CDW) physics
[6–17], and conventional s-wave SC transitions [15,18], while
the SSH interaction occurs in systems such as conjugate poly-
mers [19], organic charge transfer salts [20], metal salts [21],
and CuGeO3 [22].

In the two-dimensional square lattice, the half-filled Hol-
stein model predicts the emergence of a CDW phase at any
value of the electron-phonon interaction λ [23]. In the pres-
ence of an additional on-site electron-electron repulsion U ,

the system can exhibit dominant AFM or CDW correlations
depending on the relative magnitude of U and λ [24,25].
Interestingly, there are indications of an intermediate metallic
phase between the AFM and CDW phases [26–29], as well as
other exotic regimes [30].

For the two-dimensional (2D) square lattice SSH model
at half filling, it was shown [31] that a finite critical
electron-phonon interaction λc is needed to establish the bond-
order-wave (BOW) phase, and weak antiferromagnetism was
detected [32,33] for λ < λc despite the absence of U . In the
dilute limit, where bipolarons are expected to condense into a
superfluid at very high temperatures, AFM is revealed as well
in the effective Hamiltonian [34]. The cause of this antiferro-
magnetism is that, on a given bond, only electrons of different
spins can tunnel simultaneously, resulting in a lowering of the
energy via the electron-phonon coupling on the bonds and an
increase in the magnitude of the kinetic energy. In contrast,
in the Hubbard model at half filling, AFM order emerges in a
two-step process in which U first suppresses doubly occupied
sites, and then AFM order occurs due to a small remnant
exchange process J ∼ 4t2/U . The AFM phase in the Hubbard
limit is thereby accompanied by low kinetic energy. This
distinction will play a role in a crossover behavior we observe
in the Su-Schrieffer-Heeger-Hubbard (SSHH) phase diagram.

We study here the rich interplay of BOW and AFM regimes
in the SSHH model. Crucially, since the phonons couple to
the electrons via the kinetic term, particle-hole symmetry is
preserved and there is no sign problem (SP) at half filling. This
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FIG. 1. Phase diagram of the SSHH model at half filling. g is
the dimensionless electron-phonon coupling constant, and U/t is the
Coulomb repulsion strength. A dotted (green) line shows the location
of a crossover in the nature of the AFM. β = 16 ensures the system
is close to the ground state for all three lattice sizes. The AFM-BOW
transitions for L = 10, 12 coincide, indicating negligible finite size
effects. The insets show schematically the AFM and BOW phases.

allows us to use determinant quantum Monte Carlo (DQMC)
to study systems up to 12 × 12 in size and at very low temper-
ature. This contrasts with the Hubbard-Holstein model, where
the SP precludes crossing the CDW-AFM phase boundary
[29]. Our resulting phase diagram (Fig. 1) exposes phases of
long-range AFM and BOW order. Prior to our work, only
the quantum critical point along the U = 0 axis (the SSH
Hamiltonian) had been determined [31]. A central observation
of this Letter is that there are, within the AFM phase, distinct
regimes at small and intermediate electron-phonon coupling
λ. The AFM structure factor, double occupancy, and kinetic
energy remain almost constant for small λ. However, for
larger λ these quantities show a marked dependence on λ. As
a consequence, we will argue that the competition between λ

and U results not only in the expected AFM-BOW transition,
but also in a different crossover within the AFM phase. This
crossover is clearly signaled in the AFM correlations them-
selves, and also in the double occupancy, kinetic energy, and
pairing structure factors. These changes result from compe-
tition of the localizing effect of the Hubbard term and the
quantum fluctuations favored by the SSH term, although they
both can lead to AFM.

Model and method. We study the square lattice optical
SSHH model, where the electronic hopping is modulated by
an electron-phonon interaction and an on-site Coulomb repul-
sion is present. The Hamiltonian is

H = − t
∑

〈i, j〉,σ
(1 − λX̂i j )(ĉ

†
iσ ĉ jσ + H.c.) − μ

∑
i,σ

n̂iσ

+
∑
〈i, j〉

(
1

2M
P̂2

i j + M

2
ω2

0X̂ 2
i j

)

+ U
∑

i

(
n̂i↑ − 1

2

)(
n̂i↓ − 1

2

)
, (1)

where ĉiσ (ĉ†
iσ ) destroys (creates) an electron of spin σ =↑,↓

on site i, μ is the electron chemical potential, M is the phonon
mass, and ω0 the oscillation frequency. The bond phonon dis-
placement operator X̂i j connects nearest-neighbor sites 〈i, j〉;
its conjugate bond momentum is P̂i j . In the following, the
magnitude of electron-phonon coupling is given by the di-
mensionless parameter g = λ/

√
2Mω0/h̄, so that the coupling

term is tg(b̂i j + b̂†
i j )(ĉ

†
iσ ĉ jσ + H.c.). The on-site Coulomb re-

pulsion is U/t , and n̂iσ = ĉ†
iσ ĉiσ is the number operator on site

i. We work in units for which h̄ = t = M = 1 and fix ω0 = 1.
The Hubbard-Stratonovich (HS) transformation is used in

DQMC [6,23,35,36], to express the quartic Coulomb interac-
tion in quadratic form [37,38]. The fermions are integrated
out, yielding a determinant of a matrix that has the dimension
of the number of spatial sites N . The entries of the matrix
depend on the HS and phonon fields. We focus on half fill-
ing (μ = 0), which does not present a SP, and work with
β = Lτ�τ = 16, where Lτ ∼ 320 is the number of imaginary
slices, and �τ is the imaginary time step. This β is sufficiently
large to access the ground state of the SSH model on the lattice
sizes under investigation here [31].

To characterize the emerging phases, we calculate the
average kinetic energy in the x and y directions, 〈Kx(y)〉 =
〈ĉ†

i,σ ĉi+x̂(ŷ),σ + H.c.〉, and the average phonon displacement
in the x and y directions 〈Xx(y)〉. These give insight into
the broken x-y symmetry in the BOW phase. We also study
the antiferromagnetic, 〈Sx

i Sx
i+r〉, and the bond-order correla-

tion functions, 〈Kx(y)(i)Kx(y)(i + r)〉. Their Fourier transforms,
SAFM and SKx(y) , are respectively the AFM and BOW struc-
ture factors. In addition, we examine the double occupancy,
D = 〈n̂i↑n̂i↓〉, and the total kinetic energy 〈K〉 = 〈Kx〉 + 〈Ky〉,
which provide additional important insight.

Results. It is well known [39,40] that, at half filling, the
square lattice Hubbard model, Eq. (1) with λ = 0, exhibits an
AFM phase for any U > 0. Similarly, it was recently estab-
lished [32,33] that the two-dimensional SSH model, Eq. (1)
with U = 0, exhibits, at low temperature, an AFM phase for
small λ and a BOW [31] when λ exceeds a critical value. Here,
we address the unknown structure of the phase diagram in the
(g,U/t ) plane.

To this end, we determine the phase boundaries with ver-
tical and horizontal cuts, i.e., by fixing g (U/t) and studying
the behavior of the system as U/t (g) is changed. The AFM
and BOW phases are revealed by their respective structure
factors, SAFM and SKx (π, π ). For low temperature and large
systems, we start simulations with a phonon configuration that
favors the BOW phase in the x direction (bottom right inset
of Fig. 1) because this structure is found to melt rapidly in
the AFM phase, but takes a long equilibration time to form.
In principle, if we start with a random configuration, all of
the four degenerate BOW ground states can be reached if we
run long enough, as discussed in Ref. [31]. But in practice,
tunneling between these symmetry-equivalent ground states is
rare on the very large space-time lattices we study here, much
as occurs in the thermodynamic limit for an experimental
measurement. A “standard,” and well-documented, numerical
way to address this issue is to begin with an ordered pat-
tern conforming to one of the degenerate ground states. The
technique works well in part because in the disordered phase
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(a) (b)

(c) (d)

FIG. 2. DQMC results of the AFM (BOW) structure factor SAFM

[SKx (π, π )] for horizontal (left) and vertical (right) cuts in the phase
diagram. In the AFM phase, SAFM is finite and SKx (π, π ) is negligi-
ble. In the BOW phase, SAFM is negligible and SKx (π, π ) is finite.

the system relatively easily relaxes from the initial ordered
pattern, so that it does not affect the determination of the
critical point and only, trivially, selects out a particular ordered
phase. We measure SKx(y) (kx, ky) for all momenta and observe
a peak only at SKx (π, π ) when the system is in the BOW
phase [see more details in the Supplemental Material [41] (see
also Refs. [32,33,42,43] therein)]. A comparison of data for
L = 10, 12 indicates negligible finite size effects.

Figures 2(a) and 2(c) show the structure factors versus the
dimensionless g for several fixed values of U/t . For U/t =
4, 6, 8 the system is a Hubbard AFM for g = 0, and remains
AFM as g increases up to a critical value, gc(U/t ). For g < gc,
SKx is small, indicating the absence of BOW. SKx then rises
rapidly upon entry into the BOW phase at g > gc.

The behavior of the AFM structure factor SAFM is more
subtle. It is nonzero for g < gc, but there is an appreciable
change in behavior well before its value drops precipitously:
SAFM is initially constant for small g [Fig. 2(a)], but starts
decreasing at g∗ ≈ 0.2. A finite size scaling analysis [41]
shows that AFM regions exhibit true long-range order on both
sides of g∗. The difference between these two AFM regions,
inferred from the kinetic energy and double occupancy will
be discussed below. Indeed, since data for structure factors are
more noisy than local correlation functions, these complemen-
tary observables will present additional compelling evidence
for the crossover behavior at g∗.

Returning to the AFM-BOW transition with increasing
g, we see [Fig. 2(a)] that when SAFM drops, SKx becomes
nonzero. This occurs at gc ∼ 1 for L = 12. In Figs. 2(b) and
2(d) we show the same quantities as Figs. 2(a) and 2(c) but
now g is fixed and U/t varies. For g = 0.6, SKx is small for
all U/t while SAFM increases smoothly as U/t increases. For
this value of g the system is always AFM. For g � 0.8, SAFM

is very small (essentially zero) while SKx is large up to a g-
dependent critical value Uc(g), indicating that the system is in
the BOW phase [31]. At Uc(g), there is a first-order transition

(a) (b)

(c)
(d)

FIG. 3. DQMC results of average kinetic energy 〈Kx(y)〉 and aver-
age phonon displacement 〈Xx(y)〉 in x and y directions for horizontal
(left) and vertical (right) cuts in the phase diagram.

from the BOW to the AFM phase, with clear discontinuous
jumps in the order parameters. This first-order character is
also observed for the larger U values in the horizontal cuts
(sweeping g at fixed U ) in Figs. 2(a) and 2(c).

As shown in Ref. [31], the BOW has (π, π ) ordering
vector either in x or in y with two sublattice possibilities
in each direction, resulting in the Z4 symmetry breaking (in
the thermodynamic limit). We now focus on this symmetry
breaking as the system leaves the AFM phase and enters the
BOW phase. In the AFM phase, the average kinetic energy
and phonon displacement in the x and y directions are equal.
In the BOW phase, the average kinetic energy and phonon
displacement which align with the BOW direction increase in
magnitude. We show in Fig. 3 the behavior of these quantities
for the same parameters as in Fig. 2. In Figs. 3(a) and 3(c),
the x-y symmetry is preserved in the AFM phase, g < gc(U ),
and broken immediately when the system enters the BOW
phase. This is clearly seen in the bifurcation in Kx(y) and
Xx(y) at gc. As the on-site interaction becomes stronger, the
electron-phonon coupling strength required to establish the
BOW phase becomes larger.

In Figs. 3(b) and 3(d), for constant g, the x-y symmetry
is broken for U < Uc(g), g � 0.8, and restored immediately
when the system exits the BOW and enters the AFM phase
at Uc(g). For g = 0.6, the system is never in the BOW phase
for all U and therefore the x-y symmetry is always preserved.
The values of gc(U ) and Uc(g) obtained in Figs. 2 and 3
are in close agreement. We remark that, as observed in both
figures, a small increase in g (i.e., from 1.0 to 1.2) leads to
significant changes of Uc (i.e., from 12 to 26). Putting these
cuts at constant g and U together yields the phase diagram
shown in Fig. 1.

We now focus on the two AFM regions (separated by
the vertical dotted line in Fig. 1) for which SAFM provided
initial evidence. We recall that for g = 0, the system is in
the Hubbard AFM phase for any U > 0, while for U = 0,
the system is in the SSH AFM phase [32,33] for small g. The
SSH AFM at U = 0 clearly has a different mechanism from
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(a) (b)

(c) (d)

FIG. 4. (a) Average kinetic energy. (b) Double occupancy for
different U and fixed lattice size L = 12. (c) Derivative of the kinetic
energy with respect to g. The legends in (a) and (b) explain the
symbols in (a)–(c). (d) Pairing structure factors at fixed U = 4 and
L = 10.

the traditional two-step Hubbard model process of moment
formation at energy scale U , followed by moment ordering
at energy scale J ∼ 4t2/U . A close analysis of Figs. 3(a) and
3(c) shows that both 〈Kx(y)〉 and 〈Xx(y)〉 remain almost constant
for g � 0.2 and then increase in magnitude for g > 0.2. Sim-
ilarly, the AFM structure factor in Fig. 2(a) is approximately
constant for g � 0, 2 and decreases for larger values of g.

In Fig. 4(a), we show the average kinetic energy as a
function of g for several values of U . 〈K〉 clearly exhibits a
change of behavior at g∗ ≈ 0.2, supporting what is seen in
Fig. 2 for SAFM. This is captured even more effectively in
Fig. 4(c), which shows a sharp peak at g ∼ 0.275 in ∂〈K〉/∂g
vs g. A comparison between 〈K〉 given in this SSHH Hamilto-
nian and in an (approximate) “effective” Hubbard model [41]
gives more insight on this crossover. Figure 4(b) shows the
double occupancy D which increases in value for g � 0.2.
This behavior (larger kinetic energy and double occupancy)
indicates that the system has left the “large U” Hubbard
AFM, where both quantities are suppressed, and entered an
AFM region strongly influenced by the SSH electron-phonon
coupling, where quantum fluctuations are large. Going from
one of these AFM regions to the other is a crossover, not a
phase transition. Nevertheless, there is a clear signature in the
increased quantum fluctuations.

Since the pure SSH Hamiltonian preserves O(4) sym-
metry, and an AFM/CDW/SC degenerate ground state is
expected in the antiadiabatic limit [32,33], it is useful to ex-
amine the superconducting structure factor Spairing, the spatial
sums of the real-space correlations 〈�α (i + r)�†

α (i)〉 with
standard conventions �†

s (i) = c†
i↑c†

i↓, �
†
d (i) = c†

i↑
1
2 ( c†

i+x↓ −
c†

i+y↓ + c†
i−x↓ − c†

i−y↓ ), etc. [44]. These are shown in Fig. 4(d).
Similar changes are observed at the crossover. A bifurcation in
pairing with px and py symmetry, as well as the sharp change
in d , and sxx pair form factors, at gc ∼ 0.9 also signal the
AFM-BOW phase transition. An interesting, and intuitively
reasonable, observation is that a BOW pattern formed along
the x or y direction of the square lattice increases pairing

along plaquette diagonals (pxy, pyx, and sxx), but competes
with pairing channels which are also aligned directly along
the bonds (d, px, py).

Conclusions. In this Letter, we used DQMC simulations
to map out the phase diagram of the single-orbital square
lattice optical SSHH model. Our work fills in the full two-
dimensional phase diagram in the plane of positive U and
g, hitherto only investigated along the U = 0 and g = 0
axes. The phase diagram is characterized by BOW and AFM
phases. At larger electron-phonon coupling strength, the x-y
symmetry is spontaneously broken and the system develops
a BOW with a (π, π ) order. Given the different broken sym-
metries in the BOW and AFM phases, and the sharp increase
of the BOW structure factor, the results indicate a first-order
transition between these two phases. The most salient fea-
ture is that the ground state phase transition is much more
sensitive to changes in electron-phonon coupling compared
to variations in the Coulomb repulsion. We interpret this as
the result of the lack of a direct competition between the two
ordered phases. In the Hubbard-Holstein model, U suppresses
double occupancy while the Holstein g enhances it. Thus the
two interactions always conflict: They want the most funda-
mental structure, the site occupations, to behave completely
differently, yielding Uc ∼ g2 (at ω0 = 1). No such competi-
tion appears in the SSHH model. Indeed, both interactions
individually give rise to AFM order, leading to somewhat
cooperative tendencies. We thus argue that this is why adding
U does not significantly inhibit the formation of the BOW
phase by the SSH phonons, leading to a near vertical phase
boundary.

In the AFM region, for small electron-phonon coupling
g, all the quantities that we analyzed, e.g., the AFM struc-
ture factor, kinetic energy, phonon displacement, and double
occupancy, remain approximately constant. For g � 0.2, the
double occupancy and the magnitude of the kinetic energy
start increasing, while the AFM structure factor decreases.
This occurs even though the system still possesses true long-
range AFM order as demonstrated by a finite size scaling
analysis [41]. This is due to the fact that the Hubbard AFM
and the SSH AFM mechanisms are different [32,33]. This in-
sight into the physics of the SSH-Hubbard Hamiltonian can be
thought of as analogous to the well-established crossover from
a Slater insulator to Mott-Hubbard insulator and from itinerant
AFM to Heisenberg AFM with increasing U in the Hubbard
model (g = 0) [40,45,46]. We focused here on intermediate to
strong coupling, i.e., U exceeding half the bandwidth W = 8t
and ω0 = t . Further investigation of the effect of ω0 on the
crossover is of interest.

Individually, the Hubbard and SSH Hamiltonians exhibit
a rich panoply of phenomena when doped away from half
filling. The interaction U leads to a complex mixture of
pseudogap physics, strange metal behavior, stripe order, and
d-wave pairing when doped. The SSH model hosts polarons
in the dilute limit which can bind to bipolarons and condense
into superconducting phases. Other phases of matter are thus
likely to emerge from the study of regimes of the SSHH
Hamiltonian away from half filling. Work in this direction has
already begun as shown in Ref. [47].

Note Added. We have recently become aware of the
manuscript [48] which reports closely related work.
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