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Spin imaging of Poiseuille flow of a viscous electronic fluid
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Recent progress in fabricating high-quality conductors with small densities of defects has initiated studies of a
viscous electron fluid and has motivated the search for evidence of a hydrodynamic regime of electron transport.
In this Letter we come up with the spin imaging technique, which can allow to attest to the emergence of
electron hydrodynamic flows. Using numerical calculations, we examine specific inhomogeneous distributions
of the electron spin density injected in a sample with a Poiseuille flow of a viscous electron fluid. We also
demonstrate that the Hanle curves (the dependencies of the electron spin on magnetic field) at different positions
across the channel acquire relative phase shifts resulting from the space variation of the hydrodynamic velocity.
The studied effects can be employed to detect and map a viscous electron fluid noninvasively.
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In high-quality conductors with small densities of defects,
electrons can form a viscous fluid at low temperatures due to
frequent electron-electron collisions. The charge transport in
such a fluid is carried out by inhomogeneous hydrodynamic
flows, controlled by the particular shapes of the samples,
while its resistance becomes proportional to the viscosity
coefficient. These ideas were first proposed and theoretically
developed for bulk metals with strong electron-phonon cou-
pling [1]. Recently, this topic has become of interest as a
hydrodynamic regime of electron transport has been real-
ized in high-quality samples of graphene [2–8], high-mobility
GaAs quantum wells [9–22], quasi-two-dimensional metal
PdCoO2 [23], and the Weyl semimetal WP2 [24]. These exper-
iments motivated many theoretical works (see, for example,
Refs. [25–41]), which were aimed to formulate and search
for evidence of the hydrodynamic regime as well as to study
various types of flows.

Evidence of the formation of a viscous electron fluid is
based, first, on an inhomogeneity of space distributions of
its flows, leading to specific properties of the observed sam-
ple resistances. The simplest of these properties is the cubic
dependence of conductance on the sample width. This depen-
dence was observed for the first time in Ref. [23] for stripes
of PdCoO2. In samples with a peculiar geometry of edges
and contacts, whirlpools can appear, similarly to water flows
in rivers. Thus the opposite directions of the current and a
voltage drop appear for some pairs of contacts. This effect
of “absolute negative resistance” was proposed as evidence of
viscous flows of electrons in Ref. [6] and was observed for
graphene samples in Ref. [2]. Second, the dependencies of
electron viscosity on magnetic field and flow frequency are
very specific and can be used to characterize a viscous elec-
tron fluid. The giant negative magnetoresistance observed on
high-mobility GaAs quantum wells [12–15] was explained by
this effect and thereby was employed to detect hydrodynamic
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transport [16]. For ac flows of an electron fluid, the viscosity
exhibits resonance at a doubled electron cyclotron frequency
[38,39]. Such resonance manifests itself in responses of the
fluid conductance on incident radiation, that was apparently
observed in Refs. [9,20,21]. In particular, in a strongly non-
ideal electron fluid the ac flow is formed by transverse shear
stress waves, whose dispersion law reflects the resonance in
the viscosity coefficients. In recent works [7,8] direct ob-
servations of the profiles of the Hall electric field and the
current density for a Poiseuille flow of two-dimensional (2D)
electrons in graphene stripes by means of space-resolved mea-
surements of electric and magnetic fields were reported.

All these methods are quite difficult to use: They require
either an analysis of data on a number of specially designed
samples with a given geometry or applying sufficiently strong
magnetic fields. Therefore, simpler, weaker-invasive methods
are desired.

In this Letter we propose a spin-injection-based method to
detect and map the hydrodynamic regime of electric transport
(see Fig. 1). Namely, we demonstrate that the space distri-
bution of the injected spins can be employed to visualize a
viscous flow of an electron fluid (“spin imaging technique”).
In particular, the distributions of the electron spin density
and its magnetic field dependence for the Poiseuille flow
of a viscous electron fluid strongly differs from the Ohmic
regime. We demonstrate this concept by performing numerical
calculations with realistic parameters for GaAs quantum well
high-mobility samples.

The advantage of the proposed method is that the injected
spin distribution has almost no effect on a given electron flow.
In this way, the proposed technique is “light and noninvasive,”
as compared with the already existing methods of detection of
the viscous electron fluid. In addition, measuring spin distri-
butions with high accuracy and resolution is a well-developed
technique [42,43].

We consider a flow of 2D viscous electron fluid in high-
mobility samples, where the length of the electron scattering
on impurities ltr can be longer than the one of the electron-
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FIG. 1. Scheme of the proposed spin imaging technique. Light
and dark blue curves depict the electron flow velocity V (y) under
electric field E for the Poiseuille and Ohmic-like regimes, respec-
tively. Spin-polarized electrons are injected from the contact located
at x = 0. The spin polarization Sz(y) (indicated by red arrows) ex-
hibits an inhomogeneous profile reflecting the profile V (y) and can
be detected by a local spin probe. Inset: Profiles of the Poiseuille and
the Ohmic-like flows.

electron collisions lee. In this regime the electron momentum
relaxation takes place predominantly or mostly at the channel
boundaries with the subsequent formation of the Poiseuille
flow.

In the case of long and sufficiently wide samples, W �
lee (realized, for example, in experiments [7,8,17–19]), the
velocity distribution can be found from the Navier-Stokes
equation with an added bulk relaxation term. The result for
stationary flows in samples with some density of defects and
fully rough edges takes the form [1]

Vx(y) = e Ex

m τtr

{
1 − cosh[(y − W/2)/lG]

cosh[(W/2)/lG]

}
, (1)

where m is an electron mass; W is the channel width; τtr

is the momentum relaxation time in the bulk due to scatter-
ing of electrons on disorder or phonons; lG = √

ητtr is the
Gurzhi length yielding the width of the near-edge layer in
Ohmic flow where the viscosity effect is substantial; η =
v2

F τee/4 is the viscosity of the electron fluid determined by
electron-electron collisions; τee = lee/vF is the time of re-
laxation of the shear stress due to interparticle collisions;
and vF is the Fermi velocity. Equation (1) describes the ho-
mogeneous Ohmic flow Vdr = e Ex/(m τtr ) at lG � W , while
the Poiseuille parabolic distribution appears in the opposite
limit lG � W [see Fig. 1, where we also use the notation
V∗ = V (W/2)]. Note that although inhomogeneous distribu-
tions of the spin density will be studied below, the particle
density n is assumed to be homogeneous. Perturbations of n
appear for nonstationary flows, formed by plasmons, or when
a perpendicular magnetic field is applied (see, for example,
Ref. [39]).

We address systems with no pronounced effects of spin-
orbital coupling on electric current distribution and neglect
the near-boundary spin accumulation due to the spin Hall

effect [44–46] or the rotational viscosity effect [47–51]. In the
latter, a vorticity of the electron flow induces a torque acting
on the electron spin and results in the generation of the spin
density [47]. In other words, our consideration is valid for
systems where the electric current profile is settled according
to Eq. (1), while the distribution of the spin density follows
the local drift velocity of the electron fluid and does not affect
its orbital motion. In this approximation the distribution of the
spin density S is determined from the drift-diffusion model
[52] given by the following equations,

Ṡ + ∇iqi = [�L × S] − S/τs, (2)

where ∇i denotes the partial derivative ∂/∂xi, qi is the spin
current (the flow of the value S along the direction xi), �L is
the Larmor precession frequency due to the in-plane magnetic
field, and τs is the spin relaxation time, which is assumed
to be isotropic. The spin current qi in Eq. (2) contains two
contributions,

qi = −Ds∇iS + ViS, (3)

where the first term describes the spin diffusion with coef-
ficient Ds and the second term stems from the drag of the
spin density with the drift velocity V = exVx(y) determined
by Eq. (1). In Eq. (3) we omit the shear-viscosity-like term
∼�Lqi since for conventional electron fluids it is small to
the extent of the parameter l2

ee/a2
char � 1 (see, for example,

Ref. [46]; here, �L is the Laplace operator and achar is the
characteristic length scale of flow inhomogeneity).

For further consideration we also use the spin diffusion
length Ls = √

Dsτs and the spin drift length Ld = V∗τs in the
center of the channel, V∗ = Vx(W/2).

In general, the spin diffusion length in high-mobility sam-
ples can be extremely large due to long momentum relaxation
times τtr . For instance, in clean graphene-based lateral spin
valves the spin can diffuse to a distance of up to 1 μm
[53–55]. However, when the viscous electron fluid is formed,
Ds = v2

F τ ′
ee/2 is significantly reduced [43] as it is mostly

governed by electron-electron scattering, where τ ′
ee describes

the relaxation of spin current density [46]. By this means the
spin relaxation time τs is controlled by the Dyakonov-Pelel-
like mechanism giving 1/τs ∼ �2

soτ
′
ee [56,57]. The decrease

of Ls due to the interparticle scattering is favorable for the
spin imaging of the Poiseuille flow, as the weakening of the
spin diffusion prevents distortion of an inhomogeneous spin
pattern.

In order to calculate the distribution of the spin flow and
the spin density, we used the boundary conditions of the
absence of spin current: qz

y = 0 at the edges y = 0 and y = W .
We assumed that at the contact at x = 0 the spin current
qz

x is proportional to the electric current and the fixed spin
polarization of electrons in the ferromagnetic contact [52]. In
the considered geometry, we take qz

x = C Vx(y), where C is a
constant. This condition is consistent with the hydrodynamic
distribution (1) of the electric current. We recognize that the
electric current distribution right in the vicinity of a contact
(x � W ) can change from the Poiseuille form. However, be-
yond this transition region the hydrodynamic velocity will
be settled according to Eq. (1). It is essential that the spin
polarization density Sz(x, y) is strongly inhomogeneous.
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FIG. 2. (a) Calculated distribution of spin polarization in a vis-
cous electron fluid over the channel. (b) Profiles of spin density
at different x positions: x = 0.6W (1), x = 1.2W (2), x = 1.6W
(3), and x = 2W (4). In the calculations we used parameters typ-
ical for high-mobility GaAs quantum well samples: τs = 200 ps,
Ds = 60 cm2/s (Ls ≈ 1.1 μm), V∗ = 4 × 106 cm/s (Ld = 8 μm),
and W = 8 μm.

The calculated distribution of spin density Sz emerging in
the Poiseuille flow of electrons is shown in Fig. 2. The pa-
rameters are relevant for high-mobility GaAs quantum wells
[43,57] and are described in the caption to Fig. 2. Note that
the profile along the cross-section coordinate y becomes more
inhomogeneous at larger distances x from the contact. This
feature is due to a more effective dragging in the center of the
channel than near the edges. From Refs. [42,43], one can see
that, for example, the Kerr-rotation microspectroscopy allows
us to resolve spin distributions at least on a 0.5-μm scale,
which is sufficient to observe the spin distributions presented
in Fig. 2.

The tail (at large x) of the spin distribution Sz(x, y) pre-
sented in Fig. 2(b) can be approximated by simple analytical
expressions. For the slowest decaying solution by x we ob-
tained

Sz(x, y) = A e−x/L∗

[
1 − �c cos

(
2πy

W

)]
, (4)

where A is a constant being independent of x and y, the
factor e−x/L∗ describes the spin density decay with an av-
eraged drift length L∗ = 〈Vxτs〉 = 2Ld/3, and the parameter
�c determines the contrast of the spin distribution. Note that
approximate formula (4) neglects the dependence of the shape
of the profile of Sz(y) on the coordinate x. It follows from
Eq. (4) that imaging of the Poiseuille flow by spin injection is
well distinguishable provided that �c ∼ 1.

In order to determine the critical set of parameters beyond
which �c becomes too small we derive an approximated
analytical solution for Eq. (2). We use the biharmonic approx-

FIG. 3. Dependence of the spin polarization contrast � across
the channel on its width W . The parameter �c from Eq. (4), which
provides the approximate value of � in the Poiseuille regime, is
shown by the dashed curve. Inset: Dependence of the contrast pa-
rameter �c on the ratio Ls/W , characterizing the strength of the spin
diffusion, for the Poiseuille regime.

imation for the y dependence of Sz(x, y) and Vx(y) and take
into account only the drift component of qz

x. We obtain �c =
6/[2π4ξ 2 +

√
18 + 72π2ξ 2 + 4π8ξ 4], where ξ = Ls/W . Ex-

pression (4) with such �c is valid in the range 1 � ξ � 0.05,
where the right boundary is determined by the failure of the
biharmonic approximation due to a weakened spin diffusion.
The spin distribution plotted in Fig. 2 has the parameters
ξ = 0.14, �c = 0.52, and the expression from Eq. (4) fits well
with the numerical solution starting from x/W � 1.2.

The dependence of �c on the ratio Ls/W is shown in the
inset of Fig. 3. It is seen that the spin contrast decreases signif-
icantly, �c � 0.2, already at moderately strong spin diffusion,
ξ � 0.3, instead of ξ � 1, as it might be expected. Since
�c is determined by the single ratio Ls/W , the applicability
of the spin imaging approach for sufficiently large in-plane
electric fields (when Ld � Ls) is governed by simple criteria
W � 3Ls, suggesting that a more plausible situation is realized
for sufficiently wide samples.

The spin contrast across the transition between the
Poiseuille and the Ohmic transport regimes is illustrated in
the main panel of Fig. 3, where we present the dependence of
� = [Sz(yc) − Sz(ye)]/[Sz(yc) + Sz(ye)] on the sample width
W calculated at x = 12 μm. Here, yc = W/2 is the center
of the channel and ye = W/10 is a point near its edge. A
nonmonotonic dependence �(W ) stems, first, from the fast
increase of �c(Ls/W ) due to the suppression of the role of
the spin diffusion in a Poiseuille flow with the increase of W ,
and, second, from the transition to the Ohmic regime where
the distributions V (y) and Sz(y) become homogeneous except
for the near-edge layers (see Fig. 1).

Next, we study the effect of an in-plane magnetic field
B||ey on the distribution of the injected spin density. Note
that in the drift-dominated regime the difference between
two Larmor frequencies ��L at which the Hanle curve (the
dependence of Sz,x on �Lτs) exhibits the neighboring peaks
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FIG. 4. Distribution of the spin density in a magnetic field directed along the y axis. (a), (b) Space-resolved densities Sz and Sx at �Lτs =
3.5. (c), (d) Magnetic field dependencies of Sz and Sx calculated at x0 = 12 μm away from the injector. The Hanle curves on the right panels
are taken at the center (y = 0.5W , blue color) and near the edge (y = 0.1W , orange color) of the channel. The positions of spin detection in
each case are depicted by big dots of corresponding colors on the left panels. The parameters of the sample are the same as in Fig. 2.

or dips at a fixed point in space can be estimated as ��L =
(2πVx )/x0, where x0 is the distance from the injector. In the
case of Poiseuille flow, the drift velocity Vx(y) from Eq. (1)
changes significantly across the channel. A manifestation of
this feature is the shift ��L as a function of the y coordinate at
fixed distance x0. This effect can be called the “desynchroniza-
tion” of the Hanle curves and it can serve as more evidence of
the formation of a viscous electron flow.

We proceed by considering this effect in more detail. We
keep only the injection of the Sz spin component. In Figs. 4(a)
and 4(b) we plotted the inhomogeneous spatial patterns of
Sz, Sx calculated by Eqs. (1)–(3) with the same boundary
conditions at fixed magnetic field �Lτs = 3.5 (red and blue
colors stand for the positive and negative signs, respectively).
The distribution of the spin density visible in Fig. 4 is spe-
cific for the drift-dominated regime of the spin transport [52].
Importantly, Sz,x are sign altering and inhomogeneous at the
same time. One can see that at a fixed distance x0 the spin
density can have different signs in the center and near the
boundary of the channel. This feature is explicitly connected
with the strong inhomogeneity of the hydrodynamic velocity.

The relative shifts of the oscillation periods ��L of the
Hanle curves are seen in Figs. 4(c) and 4(d). The Hanle curves
are calculated at the two spatial positions across the channel
[see Figs. 4(a) and 4(b)]. When �Lτs ∼ 4, these shifts are up
to π . We argue that the presented desynchronization of the
Hanle curves upon a hydrodynamical response can be used to
confirm independently the formation of the viscous electron
fluid.

In conclusion, we have proposed an approach to visualize
hydrodynamic flows of an electron fluid by measuring the spin
polarization distribution across the transport channel. Based
on our calculations, we show that measuring both the spin
polarization contrast and the Hanle curves at the center and
near the boundary of the channel allows one to detect the
hydrodynamic regime. We believe that the proposed method
paves the way towards noninvasive studies of hydrodynamic
viscous electron fluids in samples of different geometry and
microscopic structure.

This work has been supported by the Russian Science
Foundation (Project No. 18-72-10111).
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