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By taking inspiration from the backflow transformation for correlated systems, we introduce a tensor network
Ansatz which extends the well-established matrix product state representation of a quantum many-body wave
function. This structure provides enough resources to ensure that states in dimensions larger than or equal to one
obey an area law for entanglement. It can be efficiently manipulated to address the ground-state search problem
by means of an optimization scheme which mixes tensor-network and variational Monte Carlo algorithms. We
benchmark the Ansatz against spin models both in one and two dimensions, demonstrating high accuracy and
precision. We finally employ our approach to study the challenging S = 1/2 two-dimensional (2D) J1-J2 model,
demonstrating that it is competitive with the state-of-the-art methods in 2D.
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Understanding quantum many-body (QMB) systems in
and out of equilibrium is one of the most exciting open chal-
lenges in physics. In recent years, significant progress has
been made in the study of strongly correlated systems. Several
experimental approaches implementing Feynmans’ simula-
tors [1] are allowing the controlled exploration of uncharted
territory [2–8].

On the theoretical level, the development of tensor-network
(TN) techniques has significantly expanded the scope of vari-
ational approaches to QMB systems since the introduction of
the density-matrix renormalization group (DMRG) algorithm
[9]. The TN’s goal is to represent the QMB wave functions by
means of a set of tensors, connected in a generic network via
auxiliary bonds with finite dimension, thus overcoming com-
putational limitations due to the exponentially large Hilbert
space [10,11]. The bond dimension χ can be adjusted to
manipulate the information content of the TN, thus going from
product states (χ = 1), reproducing mean-field approxima-
tions, to the exact but inefficient wave-function representation.
In one dimension (1D), the matrix product state (MPS) ge-
ometry has demonstrated an unprecedented accuracy for both
equilibrium and out-of-equilibrium problems [12,13]. How-
ever, TNs have some fundamental limitations, such as the
intrinsic hardness of finding efficient contraction schemes [14]
and unfavorable scaling of the required resources with the
system size in higher dimensions [10]. Most successful TN
geometries, such as projected entangled pair states (PEPS)
[15] and tree tensor networks [16], suffer from drawbacks:
While the latter does not satisfy the entanglement area law
(although some effort has been spent to overcome this limi-
tation in Ref. [17]), the former suffer from high algorithmic
complexity, O(χ10), and lack exact computation of expecta-
tion values.

In parallel to the progress of TNs, artificial neural net-
works (NNs) have been discovered and used in a plethora
of scientific fields, proving astonishing versatility in physics

applications [18]. In recent years, they have been employed as
a variational Ansatz for QMB problems [19]. In this context,
a number of possible architectures have been tried, such as
the restricted Boltzmann machine [19,20], feed-forward NN
[21,22], and recurrent NN [23]. These Ansätze have been
proven to have a great descriptive power [21,24]. However,
the number of parameters entering a NN wave function may
be large and the appropriate network structure is usually not
clear a priori. Understanding an optimal geometry encoding
information from the specific dimensionality and taking ad-
vantage from both TN and NN structures could be the ultimate
solution to the QMB problem.

NNs are optimized with variational Monte Carlo (VMC)
methods [25]. A key tool is the so-called automatic differ-
entiation [26], which allows us to efficiently compute cost-
function derivatives with machine precision. This paradigm
have been recently applied also to TN optimization [27].
Combining such approaches with standard TN algorithms
appears as a promising way to find strategies to solve open
problems at the equilibrium and out of equilibrium. Ef-
forts in this direction were made with the introduction of
the entangled plaquette states (EPS) [28,29], Monte Carlo
optimized PEPS [30], and infinite PEPS optimized with au-
tomatic differentiation [31]. The space of possible hybrid
wave functions is however still largely unexplored. Here, we
introduce a variational Ansatz, generalizing the usual MPS.
The Ansatz is inspired by the so-called backflow technique,
employed in electronic-structure theory [32–34]. These ma-
trix product backflow states (MPBS) can overcome some
limitations of MPS by encoding an extensive amount of
entanglement and keeping the algorithmic complexity un-
der control. We further introduce an optimization scheme
mixing DMRG and VMC recipes which can be proficiently
applied to MPBS in order to find QMB ground states. As a
benchmark, we employ this approach against well-known 1D
and 2D spin models. Finally, we simulate the J1-J2 model,
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FIG. 1. Graphical representations of MPS and MPBS applied
to (a) 1D and (b) 2D systems. The F tensors encode correlations
between different lattice sites. The pictures represent only one of the
terms in which F is involved (see Supplemental Material [36]).

providing the ability to inspect challenging highly nontrivial
models.

Matrix product backflow states. A state |ψ〉 of a QMB
system consisting of N spin- 1

2 variables is specified by the
complex-valued function ψ (σ) = 〈σ|ψ〉, σ ∈ {±1}N being
the spin projections along the z direction. MPS [12] are de-
fined by the functional form

ψ[A](σ) = A[1](σ1)A[2](σ2) · · · A[N](σN ), (1)

where local tensors A[i](σi ) have one physical index σi and
two auxiliary indices. They can be graphically represented
as three-legged shapes connected with lines, i.e., contracted
along auxiliary indices (see Fig. 1) [12,35].

These indices run from 1 to a set of integers χi, called
bond dimensions, fixing the maximum amount of entangle-
ment entropy (EE) which can be encoded by the state [12].
MPS provide good approximations of low-entangled states,
as for instance ground states of local gapped Hamiltonians
in 1D, for which an EE area law can be proven [37]. On the
contrary, MPS cannot efficiently encode a volume law, since
this requires an exponentially large value of χ .

In order to overcome these limitations, we introduce a set
of tensors F [i, j](σi, σ j ) with two physical indices σi, σ j and
two auxiliary indices. These will encode correlations between
different lattice sites i, j. We propose a class of wave func-
tions ψ[A, F ](σ ) obtained by replacing the MPS local tensors
A[l](σl ) as follows,

A[l](σl ) → A[l](σl ) +
∑
il �=l

F [l,il ](σl , σil ), (2)

which is explicitly depending on the global set of quantum
numbers σ. This wave function can be considered concep-
tually similar to the well-known backflow wave function in

electronic structure theory, which is used to introduce corre-
lations in the mean-field theory by taking the single-particle
orbitals acting on configuration-dependent quasiparticle po-
sitions [32–34,38]. In our case, the starting point is not a
mean-field wave function, but rather an MPS, which can be
seen as a systematic improvement of the mean-field approxi-
mation. We thus refer to this class of variational states matrix
product backflow states (MPBS). It is worth mentioning that
MPBS wave functions admit a series expansion in increasing
powers of F , where each term can be formally recast as an
MPS with a locally larger bond dimension (up to 2n times the
original bond dimension, at order n). Examples of first-order
terms are depicted in Fig. 1 [details in the Supplemental Ma-
terial (SM) [36]]. MPBS with F connected as in Fig. 1(b) will
be used below to simulate 2D systems. They satisfy an area
law for EE, since any possible grid bipartion cuts a number
of auxiliary bonds and/or F tensors that grow linearly with
the length of the perimeter of the subsystem. Remarkably, it
can be proven that the MPBS’ ability to encode entanglement
can be greater, since with a particular choice of the parameters
one can encode a volume law for the EE (see SM [36]). Thus,
MPBS can in principle provide good approximations not only
of the ground states in 2D, but also of highly entangled states,
as for instance time-evolved states after quantum quenches
[39]. From an operative perspective, MPBS naturally suggest
a two-step optimization algorithm: First, the local A tensors
are optimized by using the usual MPS machineries; second,
the nonlocal F tensors are optimized by means of VMC
techniques. This alternated optimization approach has the ad-
vantage that the starting point of VMC optimization is not a
random point in the parameter space, but rather an already
acceptably good approximation of the QMB wave function.
Moreover, VMC optimization can further optimize the A ten-
sors as well, thus providing an unrestricted variational search
for our Ansatz in the last optimization stage. Finally, the
MPBS network can be exactly contracted during the Monte
Carlo steps (in contrast to other similar approaches where ap-
proximated contraction schemes are employed [30]), leading
to a purely variational scheme. In the following, we will focus
on the ground-state search, benchmarking the MPBS Ansatz
on both 1D and 2D models. The numerical results are obtained
by means of the two-step optimization algorithm just outlined.
The implementation was done in Python by means of NETKET

[40–44], a package providing machine learning and automatic
differentiation methods for QMB systems (see SM [36]).

Modified Haldane-Shastry (HS) model. First, we apply
MPBS to a 1D spin chain with periodic boundary conditions.
In particular, we consider the modified Haldane-Shastry (HS)
model HHS = ∑

j<i(1/d̃i j )2(−σ x
i σ x

j − σ
y
i σ

y
j + σ z

i σ z
j ), where

d̃i j = (N/π ) sin(π/N |i − j|). This model is known to be chal-
lenging for standard DMRG, as it shows power-law scaling
in the ground-state EE [46]. To use our optimization scheme,
we adapt the MPBS Ansatz in order to realize translational
invariance. This is achieved by adding an extra auxiliary in-
dex, connecting the first and last site, and by taking the A
tensors independent from the site i. Also, we set F [i, j] to be de-
pendent only on the distance di j = min(|i − j|, N − |i − j|)
between the connected sites. We also introduced a cutoff rc

setting the maximum distance between sites for which the F
tensors are nonzero. Due to translational invariance and the
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FIG. 2. MPBS of bond dimension χ = 5 tested with the modified 1D HS model: energy density convergence (left) and (cxx + cyy )c

connected correlator (right). The system size is N = 70.

imposed cutoff, the number of variational parameters of the
Ansatz is independent of the system size N , resulting in a
reduced computational cost for the VMC simulation. In the
first optimization stage, we write the Hamiltonian as a matrix
product operator and use DMRG [12,47] to get the optimized
A tensors. In the second stage, a VMC optimization of the
F tensors is realized, adopting the stochastic-reconfiguration
[48] approach. Since HHS commute with the total z magneti-
zation �z = ∑N

i=1 σ z
i and parity P = σ x

1 σ x
2 · · · σ x

N , we restrict
the ground-state search to the �z = 0 sector. Figure 2 shows
selected results obtained with a relatively small value of the
MPBS bond dimension (χ = 5) and rc = 3. The first sub-
plot shows the expectation value and variance of the energy,
tracked during the VMC optimization. Dotted lines represent
DMRG energies/variances for increasing values of the bond
dimension. After <102 VMC steps the MPBS energy reaches
values smaller than the DMRG energy obtained with the
larger value of χ (χ = 70). Let us remark that the number
of parameters of this MPS is much larger than the number
of parameters of our Ansatz. The second subplot in Fig. 2
shows the two-point connected correlator (cxx + cyy)c, com-
puted by taking the average of 〈σ x

i σ x
i+r〉 + 〈σ y

i σ
y
i+r〉 over i and

subtracting the square of the average x and y magnetizations.
The red points represent estimations obtained at the end of
the VMC optimization, whereas the other points are DMRG
results. These seem to converge to VMC values when increas-
ing the bond dimension. In the inset we show the correlator
cxx(N/2) + cyy(N/2) estimated during the Monte Carlo itera-
tions. The convergence appears to be fast. Other applications
of the MPBS Ansatz to 1D systems are reported in SM [36].

Two-dimensional Ising model. To corroborate the flexibility
of MPBS in describing higher-dimensional systems, we now
start analyzing 2D QMB models living on a square lattice of
size Nx × Ny with open boundary conditions. A simple way
to adapt MPS to the description of such a system is to order
the sites of the grid following a one-dimensional “snaking”
path connecting the sites [see Fig. 1(b)] [49]. Other 2D to
1D mappings have been studied [50], leading to increased
numerical precision but not to a significant improvement in
the codification of entanglement in 2D systems. The main
issue is that, since the area law in 2D implies that EE grows
linearly with the length of the subsystem perimeter, any MPS

cannot describe efficiently the typical ground states of 2D
Hamiltonians. As a possible improvement, we propose to
arrange the MPBS Ansatz in order to codify correlations be-
tween sites which are adjacent in the 2D geometry but which
are placed at a distance Ny along the 1D snaking path. This can
be done by setting the F [i](σi, σ j ) matrices different from zero
in the cases in which j = i ± Ny, where we label the lattice
sites with a single integer i = 1, 2, . . . , N . As mentioned, an
MPBS of this kind can encode the area law for the EE and,
at least for a particular choice of the parameters, the volume
law (see SM [36]). To benchmark the efficacy of MPBS
in simulating 2D systems, we consider the Ising Hamilto-
nian H = −∑

〈i, j〉 σ
z
i σ z

j + h
∑

i σ
x
i on a lattice of dimension

Nx = Ny = 11. In Fig. 3, we show the results of an MPBS
optimization, which was run with bond dimension χ = 5 and
transverse field h = 3.0, close to the quantum critical point
of the system hc � 3.044 [51]. These results are compared
with DMRG findings at different bond dimensions and with
the energy value obtained by Lubasch and others by means of
PEPS [45]. As in the previous case, MPBS with an extremely
small bond dimension leads, after ≈100 VMC iterations, to
results significantly better than DMRG, both in terms of en-
ergy density and variance. Since the system has rotational
symmetry, during the last �150 Monte Carlo iterations we
explicitly symmetrize the MPBS with respect to the C4 group
of fourfold rotations. We therefore consider the modified wave
function ψ ′[A, F ](σ) = ∑3

k=0 ψ[A, F ](Rkσ ), where R is a ro-
tation of π/2 of the spin configuration. This results in a further
improvement of the energy and energy variance. The value
of the energy density we find at the end of the optimization
is 〈H〉 /N = −3.172 08(1), in agreement with recent findings
[23]. In the second subplot, we show the correlator czz(r) =
1

Nr

∑
r,|r|=r 〈σ z

ic
σ z

ic+r〉, where ic indicates the central site of the
grid and Nr is the number of sites placed at distance r from
this. MPBS points seem to be in agreement with the trend of
DMRG results for increasing bond dimension.

Two-dimensional J1-J2 model. Finally, we consider the
antiferromagnetic J1-J2 model, with Hamiltonian H =
J1

∑
〈i, j〉 σi · σ j + J2

∑
〈〈i, j〉〉 σi · σ j , where the first (second)

sum is on first- (second-) nearest-neighbor couples of sites.
This is a prototypical frustrated magnetic system. Despite
active research in the past decades [52–55], the nature of
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FIG. 3. MPBS of bond dimension χ = 7 tested with the 2D Ising model (Nx = 11, Ny = 11): energy density convergence (left) and czz

correlator (right). The PEPS result is taken from Ref. [45].

the ground state around the point of maximum frustration
J2/J1 = 0.5 remains unclear. We address the problem Hamil-
tonian by means of MPBS arranged as above and also adding
F tensors connecting second-nearest-neighbor sites (see SM
for details [36]). As in the HS model, we reduce the sim-
ulation to the zero magnetization sector. In Fig. 4 we show
some selected results obtained with a system of size Nx =
Ny = 8 and J1 = 1, J2 = 0.5. After �350 VMC optimiza-
tion iterations, we apply C4 wave-function symmetrization.
We compare our results with the EPS and PEPS results re-
ported in Ref. [28] and with Monte Carlo optimized PEPS
results reported in Ref. [55]. The final energy density of our
simulation is 〈H〉 /N = −1.9273(9) and is lower than both
values reported in Ref. [28], whereas it is about ≈7 × 10−3

greater than the value reported in Ref. [55]. It should be
however remarked that the value in Ref. [55] is not strictly
variational, because of the approximate contraction scheme
adopted for PEPS. Finally, we measure relevant observables
as the correlators cver(r) = 1

Nx

∑
j 〈σ1, j · σ1+r, j〉 and chor(r) =

1
Ny

∑
i 〈σ i,1 · σ i,1+r〉, which are shown in the second half of

Fig. 4. These are respectively the average spin-spin correlators
along the columns and the rows of the grid. Since the wave
function ψ ′[A, F ](σ) is symmetric under a rotation of π/2,

we always find values for these correlators to be compatible
within the uncertainty bars. On the contrary, DMRG results
show that MPS are unable to encode power-law decaying cor-
relations along the horizontal direction. We also measure the
structure factor S2(q) = 1

[N (N+2)]

∑
i, j 〈σ i · σ j〉 e−iq·(i− j) for

different pitch vectors q. We find S2(0, π ) � 3.19(5) × 10−2

and S2(π, π ) � 0.241(3). The latter corresponds to the Néel
order parameter. Both values are compatible with similar find-
ings in Ref. [54]. We also obtain S2(0, 0) = 1.3(2) × 10−4,
consistent with the expectation that the J1-J2 ground state is
in a singlet under SU(2) global symmetry.

Conclusions and outlook. We have introduced a variational
Ansatz which exploits state-of-the-art numerical techniques
based on tensor networks and automatically differentiable
variational Monte Carlo. This many-body wave function en-
codes area law entanglement for high-dimensional systems.
The efficiency of MPBS allows us to study challenging 2D
models, encoding accurate long-range correlations and going
beyond the standard PEPS and MPS Ansätze. The MPBS
structure takes its root from the usual MPS, whose descriptive
power is augmented by introducing a class of long-ranged
tensors. This arranged network is well suited for a two-step
optimization scheme, i.e., DMRG followed by VMC. The

FIG. 4. MPBS of bond dimension χ = 12 tested with the J1-J2 model on a square lattice (Nx = 8, Ny = 8). PEPS and EPS results are taken
from Ref. [28]. In the right plot, solid (open) markers represent DMRG results for cver(r) [chor(r)], and red points are MPBS results.
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second step takes advantages from using an already reason-
ably good initialization of the QMB wave function and also to
the use of an exact contraction scheme. The results presented
in this Letter regarding well-known models, such as the 1D
and 2D Ising model and 1D Haldane-Shastry model, provide
evidence that MPBS constitutes a good Ansatz to approximate
the ground states of QMB systems in 1D and 2D, via a purely

variational approach. It can also be employed to study highly
nontrivial systems, such as the 2D J1-J2 frustrated model. The
final optimized wave function can be easily used to com-
pute useful observables. Significantly, the outlined two-step
method can be applied also to the real-time dynamics prob-
lems. In this case, the time-dependent variational principle
[56] followed by the time-dependent VMC can be used.
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