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A quantum spin impurity coupled to a gapless free field (the Bose-Kondo model) can be represented as a
(0+1)-dimensional field theory with long-range-in-time interactions that decay as |t − t ′|−(2−δ). This theory is
a simpler analog of nonlinear σ models with topological Wess-Zumino-Witten terms in higher dimensions. In
this Letter we show that the renormalization group (RG) flows for the impurity problem exhibit an annihilation
between two nontrivial RG fixed points at a critical value δc of the interaction exponent. The calculation is
controlled at large spin S. This clarifies the phase diagram of the Bose-Kondo model and shows that it serves as
a toy model for phenomena involving fixed point annihilation and “quasiuniversality” in higher dimensions.
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The annihilation of a stable with an unstable fixed point is a
generic possibility in renormalization group (RG) flows when
a parameter such as the spatial dimensionality, which does not
flow, is varied [1–7]. When this happens it leads to an inter-
esting regime just beyond the annihilation point. No physical
fixed point exists in this regime (although “annihilation” really
means that the real fixed points disappear into the complex
plane, where they may correspond to nonunitary conformal
field theories [8]). Nevertheless, the RG flows become very
slow. This can yield particles with anomalously small masses
or weakly first-order phase transitions with extremely long
correlation lengths [1] that show quasiuniversal [4,9] behavior
below this scale.

One generic class of examples includes field theories with
cubic terms that have continuous transitions in low dimen-
sions, which become first order (as predicted by mean-field
theory) in high dimensions. These include the Potts model
[3] (which also undergoes annihilation in two dimensions
as a function of the number of states [1,2,10–12]) as well
as Landau theories for order parameters on complex or real
projective space [13,14].

This Letter is motivated by a fixed point annihilation
phenomenon that was proposed to resolve debates about
Monte Carlo results for deconfined criticality [15] in (2+1)-
dimensional (2+1D) antiferromagnets [9,16]. In Refs. [17,18]
this was put in terms of a dimensional hierarchy of nonlin-
ear σ models in d space-time dimensions with SO(d + 2)
global symmetry [19]. These σ models have a topological
Wess-Zumino-Witten (WZW) term in the action. The case
d = 2 is the well-known WZW theory with a conformal fixed
point [20], and d = 3 is an effective field theory for various
competing order parameters in 2+1D magnets [21,22]. It was
argued that fixed point annihilation occurs between two and
three dimensions.

Unfortunately, this example of fixed point annihilation,
like the others mentioned above, requires an integer-valued
parameter (here d) to be treated as continuously variable. An
annihilation that takes place at a noninteger critical dimen-

sionality may be useful conceptually for understanding nearby
values of d , but it cannot be realized physically (and there
may be ambiguities in defining the continuous d theory). It
would be instructive to have a toy model that retained basic
features of the WZW example without the unphysical feature
of noninteger d .

Here we show that the simplest member of the “WZW”
hierarchy, in d = 1, provides such a model if we augment
it with a long-range interaction. This is a model of a spin
impurity in a gapless environment [23–27] and was suggested
as a model for fixed point annihilation in [18]. We find that
many key features of the higher-dimensional example are
retained (fixed point annihilation, quasiuniversality, emergent
symmetry). But since the fixed point annihilation occurs in
d = 1 the model is accessible to numerical simulations and

FIG. 1. Fixed points and flows as a function of the exponent
δ in the memory kernel K ∼ 1/|t − t ′|2−δ . h is the dimensionless
coupling of the 1D nonlinear σ model. h = 0 is the ordered fixed
point, and h = ∞ (not shown) is a noninteracting spin with 2S + 1
degenerate ground states. hs,u = Sgs,u label the branches of stable and
unstable fixed points.
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perhaps to experiment. The model is analytically tractable at
large spin.

The d = 1 theory without a long-range interaction is sim-
ply the quantum mechanics of a spin S (or, more generally,
a rotor), described using the spin path integral with its well-
known Berry phase term [28]. The version with a power-law
interaction ∼ 1/|t − t ′|2−δ describes a spin with a retarded
interaction, physically representing an interaction with a gap-
less zero-temperature bath that has been integrated out. This is
known as the Bose-Kondo model [23–27,29–39]. It falls into
the larger family of quantum impurity models describing a
local quantum-mechanical degree of freedom interacting with
a bath of critical fluctuations [26,27,40–42].

We study the model in a large spin limit that allows the
RG equation to be obtained to all orders in the coupling.
Using the background field method, the calculation is a simple
extension (to include the Berry phase term) of the analysis
by Kosterlitz of the long-range classical Heisenberg model
in one dimension [43]. The β function shows an interesting
structure, with two nontrivial fixed points that annihilate each
other when the interaction power law 2 − δ is varied through
a critical value. The flows as a function of δ are qualitatively
like those suggested for the WZW model as a function of ε

(in 2 + ε dimensions) [17,18], except in the behavior of one
of the nontrivial fixed points (the stable one) when δ → 0.

Model. We consider a Euclidean action for a spin of size S
with a long-range temporal interaction:

S = 1

2g

∫
dtdt ′ K (t − t ′)[�n(t ) − �n(t ′)]2 − iS �[�n]. (1)

Here �n = (n1, n2, n3), with �n2 = 1, is the field appearing in
the coherent state path integral. This is a formulation of the
SO(3)-symmetric Bose-Kondo model, in which the spin is
coupled to a local magnetization �m (associated with additional
“bulk” degrees of freedom) via a Hamiltonian Hint = J �S · �m
[23–27]. If �m has SO(3)-invariant autocorrelations obeying
Wick’s theorem, then integrating �m out yields Eq. (1) with
g−1 ∝ J2S2 and with a kernel K (t − t ′) that is proportional
to the autocorrelator of �m. We assume this is a power law at
large τ = t − t ′, K (t − t ′) ∝ |t − t ′|−(2−δ) with −1 < δ < 1.
For convenience we normalize K as

K (τ ) = C�δ

|τ |2−δ
, C = (1 − δ)

4	(δ) sin(πδ/2)
. (2)

The constant C is chosen so that the Fourier transform of
K (τ ) has a simple normalization [43,44], and a power of
the UV cutoff frequency � is included in K (τ ) so that g is
dimensionless. Finally, the Berry phase term �[�n] is the solid
angle on the sphere traced out by the trajectory, written in
terms of an extension of the field �n(t ) to a field �n(t, u) defined
on a strip with u ∈ [0, 1] as [28]

�[�n] = 1

2

∫ 1

0
du

∫
dtεμν �n · (∂μ�n × ∂ν �n), (3)

or, more simply, as �[�n] = ∫
dt (1 − sin ψ )φ̇ in the coordi-

nates �n = (cos ψ cos φ, cos ψ sin φ, sin ψ ).
Before calculating the β function, let us ask what we can

expect from stability considerations.

The action Eq. (1) has two trivial fixed points, at g = 0 and
at g = ∞. That at g = 0 is a perfectly ordered state, with no
local fluctuations in �n(t ). The fixed point at g = ∞ describes
a quantum spin with 2S + 1 degenerate ground states.

By counting dimensions we see that when δ is negative,
the ordered fixed point at g = 0 is unstable, and the g = ∞
fixed point is stable. The simplest expectation (confirmed in
the large-S calculation below) is that in this δ < 0 regime the
model flows, for any positive g, to g = ∞. On the other hand
when δ is positive, the ordered fixed point becomes stable, so
the model is in a stable ordered phase for small enough g. At
the same time the g = ∞ fixed point becomes unstable.

The flows for infinitesimal g are similar to those in a clas-
sical one-dimensional (1D) model without the Berry phase
term because the Berry phase term in the action is subleading
in the limit g → 0. As in the classical model, the change in
stability of the ordered fixed point is accompanied by the
appearance of a nontrivial unstable fixed point, representing
a phase transition, at a coupling gu that is of order δ for small
positive δ [43].

However, the Berry phase term plays a role for nonin-
finitesimal g. In particular, the g = ∞ fixed point is unstable
for δ > 0, unlike a simple classical disordered fixed point. The
simplest consistent hypothesis is therefore that for sufficiently
small positive δ there is another nontrivial fixed point gs, with
gs > gu, which is stable. This fixed point governs a stable
large-g phase with power-law correlations. Heuristically, the
Berry phase term has prevented �n(t ) from being trivially disor-
dered at large g, leading instead to a stable “critical phase”. At
small δ, with fixed S, this stable fixed point can be studied by
perturbative RG in the strength of the impurity-spin coupling
[26].

What happens to these fixed points as δ is increased? A
simple guess (in analogy to the higher-dimensional problem)
is that at some critical value δc they merge and annihilate,
meaning that for a sufficiently long range interaction the
model is always in the ordered phase (Fig. 1). We will confirm
this directly when S is large.

RG results. At large S the interesting regime is where the
coupling g and the exponent δ are both of order 1/S, so we
will write

h = gS, δ̃ = δ S. (4)

This scaling of the coupling ensures that the two terms in the
action are of comparable size in the limit of large S. (If this is
not the case, then one of the two terms dominates the action
for the “fast” modes that we integrate out in the RG step,
leading to a more trivial RG equation.) The spin size S itself is
quantized and does not flow, but it serves as a large parameter
that justifies a one-loop calculation [20]. This calculation can
be done with the background field method [43,45–47] and is
described in the Supplemental Material [44].

Our basic result is the RG equation,

dh

dτ
= 1

S

(
−̃δ h + 2

π

h2

1 + h2

)
+ O

(
1

S2

)
, (5)

where the RG time τ is the logarithm of a physical timescale.
The topology of the associated flows is shown in Fig. 1.
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The value

δc = 1

πS
(6)

for the interaction exponent separates two regimes. For larger
δ, all flows lead to the ordered phase, as noted above, but for
0 < δ < δc there is a stable nontrivial phase (governed by the
fixed point at gs), separated by a second-order phase transition
(governed by gu) from the ordered phase. The RG eigenvalue

of the coupling at gu,s is yg = ±δ
√

1 − π 2̃δ2, with the + sign
for gu.

The scaling dimension of the field �n is x1 = δ/2 at both
nontrivial fixed points, so that the spin autocorrelator decays
as |t − t ′|−δ . This exponent value is expected to be exact, like
for other long-range models, since the two local operators
appearing in the long-range term renormalize independently
when t − t ′ is large [33,43,48–50]. Below we will also need
the scaling dimension xk of the symmetric k-index tensor
X (k)

a1,...,ak
that is obtained as the traceless part of the operator

na1 · · · nak . At one-loop order this obeys [51] (see the Supple-
mental Material [44])

xk = k(k + 1)

2
x1. (7)

We conjecture that the topology of the flows found here at
large S applies for all values of the spin, including S = 1/2.
It would be interesting to study this numerically. The partition
function for the spin has a Monte Carlo sign-free diagram-
matic formulation, with propagators of �m represented as arcs
connecting points t and t ′ on the spin’s world line [52], and
the model may also be studied with numerical RG [53,54].

Let us return to the analogy with higher-dimensional mod-
els for deconfined criticality and competing orders. In the
WZW hierarchy, two key features are (1) quasiuniversality in
the regime just beyond the fixed point annihilation (ε � εc in
2 + ε dimensions) and (2) the emergence of the full symmetry
of the σ model from a smaller microscopic symmetry group,
thanks to the irrelevance of operators analogous to X (k) for
large enough k. We examine analogs of these phenomena in
the present system.

Quasiuniversality. The quasiuniversality phenomenon will
occur in this 1D model when δ � δc. The spin will ultimately
be ordered even if the bare coupling h is large, but this will
not be apparent until a timescale ξ that diverges exponentially
with (δ − δc)−1/2 because the flows spend a large amount of
RG time close to h = 1 [1,2].

At small δ − δc we can continue to classify operators as rel-
evant or irrelevant, and the long RG time spent close to h = 1
means that irrelevant perturbations, which will be present in
a generic microscopic model with the appropriate symmetry,
become exponentially small in (δ − δc)−1/2 [9]. This exponen-
tial suppression of differences between bare models underlies
quasiuniversality. For example, we will have approximate
universality in the functional form of the spin autocorrelator
〈�n(t ) · �n(0)〉, despite the fact that it is not a power law for
δ > δc.

In fact, a simplifying feature of RG for the long-range
model is that the flow of the renormalized coupling h(τ )—
obtained from running the RG up to a physical timescale
�−1eτ —can be plotted simply by plotting the spin autocor-

relator, at least within the present large-S approximation. This
is because the RG Eq. (5) can be expressed in terms of the
running scaling dimension x(h) of the σ model field �n as
ḣ = [−δ + 2x(h)]h(see Eq. (15) of the Supplemental Material
[44]). RG for the correlator then gives

〈�n(t ) · �n(0)〉 = h(0)

(�t )δ h(ln �t )
. (8)

It would be interesting to use the correlator Eq. (8) to obtain a
proxy for the β function from Monte Carlo simulations in the
quasiuniversal regime.

As an aside, a curious feature of the model is that the
two-point function Eq. (8) tends to a constant at large times
both in the ordered (h → 0) phase, which is stable for δ > 0,
and also in the free-spin (h → ∞) phase that exists for δ < 0.
However, the two fixed points are different.

One concrete way to see the difference is in connected two-
point functions G(k)(t ) of operators with higher spin, k > 2S.
For a completely free spin, nonvanishing operators exist only
with spin k � 2S. However, in the microscopic theory of a
spin coupled to a bath we can construct nonvanishing opera-
tors with any spin k, as discussed in the Supplemental Material
[44]. Let G(k)(t ) be a connected two-point function for such
operators. In the free-spin phase limt→∞ G(k)(t ) is nonzero
for k � 2S and vanishes for k > 2S (because the spin and
bath decouple at the governing IR fixed point; see [44]). In
contrast, in the ordered phase we expect that limt→∞ G(k)(t )
is nonzero for all k because the corresponding continuum op-
erators X (k), defined above, have nonvanishing long-distance
correlations at the ordered fixed point. [Correlation functions
at the ordered fixed point are simple since only the zero mode
of �n(t ) needs to be averaged over.]

Emergent symmetry. We can construct a simple toy model
for the emergent symmetries [SO(4) in 1+1D and SO(5) in
2+1D] that arise in various higher-dimensional microscopic
models for which the WZW σ models serve as effective
field theories [9,21,22,55–60]. In these examples, the N-
component σ model field �n is viewed as the concatenation of
two separate fields, �n = ( ��A, ��B). ��A and ��B are not related
by microscopic symmetry but may be related by an emergent
SO(N ) symmetry at a critical point. In 2+1D, for example,
��A and ��B could be the Néel and Valence-Bond Solid (VBS)
order parameters, with the critical point of interest separating
Néel and VBS phases.

Here we take �A = nz and ��B = (nx, ny). That is, we think
of Eq. (1) as an effective field theory for a phase transi-
tion in an anisotropic microscopic Hamiltonian, with only
O(2) = Z2 � U(1) symmetry, which is promoted to emergent
SO(3) at a critical point. The critical point lies at the boundary
of a phase with easy-axis order for nz.

For concreteness, consider simple O(2)-invariant Hamilto-
nians for spin 1/2 and spin 1. Nontrivial examples require at
least two anisotropic couplings in the microscopic Hamilto-
nian, as will be clear below. For a spin 1 we could consider
single-ion anisotropy and an anisotropic bath coupling:
Haniso = J (Sxmx + Symy + γ Szmz ) − �S2

z . For a spin 1/2 the
S2

z term trivializes, but we could consider a local anisotropy
for the bath, H ′

aniso = J (Sxmx + Symy + γ Szmz ) − �m2
z . We

assume that δ � δc and that J is small enough that the
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isotropic models (� = 0, γ = 1) flow to the fixed point at gs,
which is stable in the absence of anisotropy (Fig. 1).

Microscopic O(2) symmetry allows the perturbations
δS = ∫

dt (uX (2)
33 + vX (4)

3333 + · · · ) to the continuum action.
Here X (2)

33 ∝ n2
z − (n2

x + n2
y )/2 is the leading anisotropy which

will drive the transition, and X (4)
3333 is a subleading anisotropy.

The scaling dimension formula Eq. (7) is reliable only at large
S, but it suggests that for small spin there is a range of positive
δ where X (2) is the only relevant anisotropy, with X (4) and
higher anisotropies being irrelevant. We assume δ is in this
range.

Then, the SO(3)-invariant fixed point governs a phase tran-
sition line in the (�/J, γ ) plane. One point on this line, at
(0, 1), has microscopic SO(3) symmetry, but at other points
on the line SO(3) emerges only in the IR. One adjacent phase
is the easy-axis phase, where Z2 is broken. The nature of the
other phase will depend on the spin. For spin-1/2 it is likely a
power-law phase [23] in which the easy-plane order parameter
dominates.

It may be interesting to check for symmetry enhancement
starting from other microscopic symmetry groups. For exam-
ple S4 (tetrahedral) symmetry allows the perturbation X (3)

123. We
may argue that the field theory with this symmetry breaking
and with S = 1 is an effective theory for a long-range four-
state Potts model in which the partition sum is weighted by
(−1) for each domain wall.

Conclusions. The impurity model can be seen as the sim-
plest member of a dimensional hierarchy of σ models with
topological terms [19]. We have argued that some interest-

ing features of the RG flows in higher dimensions are also
present in 0+1D, giving a rich phase diagram for the Bose-
Kondo model. The model yields an example of fixed point
annihilation that is tractable both analytically and in simu-
lations and also shows analogs of phenomena from higher-
dimensional “non-Landau” phase transitions. It would be
interesting to examine other variations, for example, models
in large-N limits, with other symmetric spaces for the target
space, or with coupling to fermions, and to explore physical
realizations of the tunable interaction exponent δ (perhaps via
a bosonic bath whose hopping parameters vary with distance
from the impurity). Finally, it would also be interesting to look
for the annihilation phenomenon in models relevant to impu-
rities in critical magnets in which the bath is not Gaussian
[29] or settings where the impurity arises as a self-consistent
description of an interacting many-body system [38].

Note added. The impurity in the large-S limit was also
analyzed recently in two other papers [61,62], with results
for the β function consistent with those above. In addition,
these papers make interesting connections with Wilson lines
and line defects in conformal field theory. Quantum Monte
Carlo results for spin 1/2 are now also available [63] and are
consistent with the phase diagram obtained here.
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