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Experimental realizations of topologically ordered states of matter, such as fractional quantum Hall states, with
cold atoms are now within reach. In particular, optical lattices provide a promising platform for the realization
and characterization of such states, where novel detection schemes enable an unprecedented microscopic under-
standing. Here we show that the central charge can be directly measured in current cold atom experiments using
the number entropy as a proxy for the entanglement entropy. We perform density-matrix renormalization-group
simulations of Hubbard-interacting bosons on coupled chains subject to a magnetic field with α = 1/4 flux quanta
per plaquette. Tuning the interchain hopping, we find a transition from a trivial quasi-one-dimensional phase to
the topologically ordered Laughlin state at magnetic filling factor ν = 1/2 for systems of three or more chains. We
resolve the transition using the central charge, on-site correlations, momentum distributions, and the many-body
Chern number. Additionally, we propose a scheme to experimentally estimate the central charge from Fock
basis snapshots. The model studied here is experimentally realizable with existing cold atom techniques and the
proposed observables pave the way for the detection and classification of a larger class of interacting topological
states of matter.
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I. INTRODUCTION

The interplay of topological band structures and interac-
tions has been a fruitful source of exotic quantum phases.
Most prominently, the fractional quantum Hall (FQH) effect
[1] can be understood in the framework of topologically or-
dered phases of matter. For example, Laughlin’s successful
trial wave functions [2] are known to have excitations exhibit-
ing Abelian anyonic braiding [3,4]. Up to now, the FQH effect
is best studied in solid-state experiments, but proposals and
first implementations of alternative realizations exist [5–18].

Early cold atom experiments used rotating traps to
mimic the effect of the external magnetic field needed to
reach the FQH regime [19–21]. In this setup, first signatures
of the bosonic Laughlin state at ν = 1/2 have been observed
[22]. A high degree of control and flexibility as well as
site-resolved imaging techniques make cold atoms in optical
lattices a promising platform to further study the correlated
nature of FQH states. Extensive numerical studies have found
evidence for various FQH states in experimentally realis-
tic models like the Hofstadter-Bose-Hubbard (HBH) model
[5,7,23–37]. In recent years, experimental progress led to the
implementation of noninteracting [38–41] and interacting [42]
Hofstadter models using ultracold atoms in optical lattices
and has paved the way towards cold atom realizations of
FQH states in the very near future. This includes models
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with anisotropic hopping, where approaches starting from
decoupled, one-dimensional chains provide a promising route
towards the successful adiabatic preparation of topologically
ordered states [29]. However, viable experimental schemes for
elucidating the topological nature of the states remain scarce.

Here, we study Hubbard-interacting bosons subject to
a magnetic field at filling factor ν = 1/2 on chains with
tunable interchain hopping. We perform density-matrix
renormalization-group (DMRG) simulations to calculate the
ground state of the HBH model for varying spatial anisotropy.
While finite-size and lattice effects affect microscopic prop-
erties of the wave function, we focus on universal properties
which are robust to such effects. In particular, we use the cen-
tral charge to identify the ground state close to the isotropic
limit in systems with three or more chains as a lattice analog
of the 1/2 Laughlin state. Furthermore, we propose a scheme
to extract the central charge from snapshots in current cold
atom experiments with quantum gas microscopes. We also
discuss signatures of the topological phase in experimentally
more established observables like the momentum distribution
along the chains. Finally, we clarify the topological nature of
the ground state by calculating the many-body Chern number
as function of the interchain hopping strength.

The approach pursued here is inspired by analytical cou-
pled wire constructions in the continuum [43–45], describing
how interchain coupling can lead to the formation of topo-
logically ordered states. A prime example is the emergence
of Laughlin and hierarchy states at proper filling factors. Fur-
thermore, coupled wires allow for an intuitive understanding
of the structure of the edge theory as well as the quasiparticles
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of such states. The generalization of this approach to discrete
chains provides a promising way to construct exotic quantum
phases in an experimentally accessible setup [29], and moti-
vates our probes of topological order.

II. MODEL

We study a lattice version of the bosonic FQH problem
in the HBH model on a square lattice of size Lx × Ly. In
particular, we allow for anisotropic hopping, such that the
Hamiltonian in the Landau gauge reads

Ĥ = −tx

Lx−1∑
x=1

Ly∑
y=1

(â†
x+1,yâx,y + H.c.)

− ty

Lx∑
x=1

Ly−1∑
y=1

(e2π iαxâ†
x,y+1âx,y + H.c.)

+ U

2

∑
x,y

n̂x,y(n̂x,y − 1). (1)

Here, â(†)
x,y are bosonic annihilation (creation) operators and

n̂x,y = â†
x,yâx,y are the boson number operators. The first

two terms describe (potentially anisotropic) hopping between
neighboring sites, while the last term describes repulsive
(U/tx > 0) on-site interactions. We choose open boundary
conditions in both directions and fix the Hubbard interac-
tion strength to U/tx = 5, which is large compared to the
bandwidth of the lowest band and also the band gap of the
single-particle model.

Furthermore, we restrict ourselves to a magnetic flux per
plaquette of α = Nφ/[(Lx − 1)(Ly − 1)] = 1/4, so that in the
isotropic case, ty/tx = 1, continuum limit analogies of ear-
lier studies [5] apply. Thus, at the magnetic filling factor
ν = N/Nφ = 1/2 studied here, we expect the ground state in
the isotropic limit to be closely related to the topologically
ordered 1/2 Laughlin state [2]. We will see that this behavior
is to some extent robust to tuning the interchain hopping
strength.

We perform DMRG simulations [46,47] using the SYTEN

toolkit [48] to study systems of varying size using the single-
site variant [49] and truncating the local Hilbert space to at
most Nmax = 3 bosons per site, justified by the large value
of U/tx. Compared to a hard-core constraint, our truncation
avoids an artificial enhancement of Laughlin physics.

III. CENTRAL CHARGE

Counting the number of chiral gapless modes at the one-
dimensional edge, the central charge is an important quantity
in the classification of topologically ordered systems. In par-
ticular, it provides a prime quantity to identify FQH states with
chiral edge modes.

For the Laughlin state at filling factor ν = 1/2, the central
charge is predicted to be cLN = 1. In our studies, the size
of the system along both directions is much larger than the
magnetic length so that we expect this prediction to hold true.
Therefore, we expect the central charge to approach unity
close to the isotropic limit, ty/tx ≈ 1. In contrast, in the weakly
coupled regime, ty/tx ≈ 0, the system can be considered a

FIG. 1. Central charge as obtained from the bipartite entangle-
ment entropy S(x) for different system sizes after extrapolation to
Lx → ∞. Faded dotted lines indicate values for finite Lx with longer
systems being less faded. We find a clear change of behavior around
ty/tx ≈ 0.6. Above this critical value, the central charge is in agree-
ment with the prediction cLN = 1 for the Laughlin state. The sketches
below the main panel illustrate the origin of the different behavior in
the decoupled (ty/tx = 0) and the isotropic (ty/tx = 1) limit by only
showing gapless chiral modes.

collection of Ly independent one-dimensional Luttinger liq-
uids, each of which contributes a value of cLL = 1 to the total
central charge, thus adding up to c = Ly.

In order to determine the central charge, we make use of
a prediction from conformal field theory (CFT) relating the
central charge c to the bipartite entanglement entropy S(x),
namely,

S(x) = c

6
log

[
2Lx

π
sin

(πx

Lx

)]
+ g, (2)

where g is some nonuniversal constant and Lx is the length of
the system [50].

Numerically, the entanglement entropy can be obtained
easily from matrix product states (MPSs). By appropriately
choosing the MPS chain, the bipartite entanglement entropy
between the two parts of the system is entirely carried by a
single MPS bond. Therefore, upon cutting this bond we obtain
a bipartition of the underlying lattice along the x direction.

In our finite-size calculations, we account for oscillations
in the entanglement entropy, in particular in small systems,
by normalizing the entropy to the ambient densities (see
Supplemental Material [51]). Furthermore, we extrapolate the
entanglement entropy to infinite bond dimensions before we
perform a fit using Eq. (2) to extract the central charge. For
details of our procedure and additional data points see Sup-
plemental Material [51].

For Ly � 3-leg systems, we find the value of the central
charge to change drastically around ty/tx ≈ 0.6 [see Fig. 1].
In particular, at large ty/tx we find that the numerical central
charge almost perfectly matches the theoretical prediction of
cLN = 1. In the weakly coupled regime convergence of the
DMRG calculations is difficult to achieve and the numerical
values for the central charge do not coincide with the predicted
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values to the same degree of accuracy. Nevertheless, a clear
change of behavior is visible in all the systems with Ly =
3, . . . , 6 chains studied in this Letter (see Supplemental Ma-
terial [51]). Given the robustness of the transition with respect
to the number of chains, we believe this feature to carry over
to the thermodynamic limit and consider it striking evidence
for the emergence of a Laughlin phase around ty/tx ≈ 1.

Remarkably, our DMRG simulations rule out a Laughlin-
like state in Ly = 2-leg systems, where we observe c =
2 throughout (see Supplemental Material [51]). However,
additional nearest-neighbor repulsion has been argued to rein-
troduce Laughlin-like states (see Supplemental Material [51]).

IV. MEASURING THE CENTRAL CHARGE IN
EXPERIMENTS

To our knowledge, the central charge has so far eluded
direct experimental measurements. We propose a protocol to
measure the central charge in state-of-the-art quantum simula-
tion platforms such as quantum gas microscopes. The typical
outcomes of these experiments are projective measurements
in the Fock basis resulting in site resolved snapshots of the
local particle number. Efficient methods to generate accurate
snapshots from MPS have been developed [61] and proved
useful for sampling realistic experimental outcomes in models
similar to ours [62].

In order to extract the entanglement entropy S(x) experi-
mentally, we propose to use the particle number entropy Sn(x)
as a meaningful proxy in certain regimes. A similar approach
has proven useful in the context of many-body localization
[63], and also theoretical attempts to study the entanglement
entropy using particle number fluctuations have been under-
taken earlier [64]. Now, we exemplify the use of snapshots
and their number entropy to determine the central charge of
the topologically nontrivial 1/2 Laughlin state.

The main advantage of the number entropy is that it can
be directly extracted from a given set of snapshots. To this
end, each snapshot is split into two subsystems A and Ā
and the probability pNA to observe NA particles in subsystem
A is determined. Then, the particle number entropy Sn =∑

NA
pNA log(pNA ) can be calculated. Repeating this scheme

for different partitions of the system similar to the case of
the entanglement entropy S above, one obtains the number
entropy Sn(x) as a function of the cut position.

In the isotropic limit, ty/tx = 1, the number entropy
provides a good estimate of the entanglement entropy
[see Fig. 2(b)]. This behavior carries over to the entire regime
in which we have identified the 1/2 Laughlin state using the
entanglement entropy. In Fig. 2(c) we find that close to the
isotropic limit the prediction of the central charge based on
snapshots agrees reasonably well with the prediction from the
entanglement entropy. Thus we conclude that this method can
indeed be used to estimate the central charge in the Laughlin
phase.

In the decoupled limit, ty/tx = 0, the number entropy
extracted from the full system is not additive in the number of
legs [see Fig. 2(a)]. In contrast, extracting the number entropy
from each leg separately, we find that the central charge cn in
each leg is in agreement with the value from the entanglement
entropy, so that multiplying cn by the number of legs provides

FIG. 2. (a) Number entropy Sn(x) from 6000 (2000) snapshots
of a single chain (three decoupled chains) of length Lx = 61. While
the number entropy provides an accurate proxy for the entanglement
entropy S(Ly = 1) of a single chain, it is not additive in the number of
chains. (b) In the isotropic limit, ty/tx = 1, the proxy Sn(x) from 2000
snapshots of the three-leg system is relatively accurate. (c) Central
charges for three-leg systems extracted from the number entropy
Sn(x) (solid lines) compared to the prediction from the entanglement
entropy S(x) (faded, dotted lines).

the correct overall central charge for the whole system. In the
intermediate regime, we attribute discrepancies between the
central charge c and the estimate cn to the nonapplicability
of the CFT prediction and to the nonadditivity of the number
entropy.

We emphasize that the proposed measurement of the cen-
tral charge is solely based on snapshots in the Fock basis,
which are routinely generated in experiments with quantum
gas microscopes [65–68]. The number entropy and the esti-
mated central charge discussed here can be extracted from
these snapshots without further experimental efforts and are
accessible to existing experiments.

V. ADDITIONAL EXPERIMENTAL OBSERVABLES

Now, we discuss further observables accessible to quantum
gas microscopes. A well-known signature of the 1/2 Laughlin
state, reflecting flux attachment underlying the formation of
composite fermions [69], is a strong suppression of on-site
correlations:

g(2)(0) = 1

2LxLy

∑
x,y

〈n̂x,y(n̂x,y − 1)〉. (3)

By allowing up to three bosons per site in our numerics, we do
not artificially stabilize the Laughlin state by imposing a hard-
core constraint for the bosons, formally U/t = ∞. In contrast,
given the small particle number densities, our simulations can
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FIG. 3. On-site correlations g(2)(0) for (a) Ly = 3 and (b) Ly = 5
chains. The transition region at intermediate ty/tx is clearly visible
by a maximum of g(2)(0). (c) Momentum distribution ny(kx ) for Ly =
5, Lx = 11,U/tx = 5.0. We observe the emergence of a chiral mode
in the outermost chains (y = 1, 5) around ty/tx ≈ 0.6. In these chains,
the momentum distribution is peaked around a finite momentum kx �=
0. In the remaining bulk chains, the momentum distribution is peaked
around kx = 0 at all ty/tx .

be expected to properly describe the experimental situation of
a finite two-body interaction.

In Figs. 3(a) and 3(b) we show g(2)(0) as a function of ty/tx.
In particular, we find that in the weakly coupled limit g(2)(0)
is very small, while it increases with increasing interchain
hopping. g(2)(0) takes a global maximum around ty/tx ≈ 0.6
before it decreases again in the strongly coupled regime.

In the isotropic limit, this drop is a key feature of the 1/2

Laughlin state, indicating the screened interactions of com-
posite fermions [69]. In contrast, in the decoupled limit this
is the result of a different Jordan-Wigner-type fractionaliza-
tion of the bosons [70–72]. In the intermediate regime, the
bosons are not able to fermionize and therefore the residual
two-particle correlations are significantly larger compared to
both of the limits.

As another experimental observable, we consider the mo-
mentum distribution along x in a given wire:

ny(kx ) = 1

Lx

∑
x,x′

e−ikx (x−x′ )〈â†
x,yâx′,y〉, (4)

where kx = 2πm
Lx

and m = 0, . . . , Lx − 1. The numerical re-
sults in Fig. 3(c) indicate the occupation of a chiral mode with
finite momentum kx �= 0 at the boundary for ty/tx � 0.6, while
in the bulk the distribution remains peaked around kx = 0 even

FIG. 4. Many-body Chern number as a function of ty/tx for a
cylinder of size Lx × Ly = 25 × 3. We find a transition towards a
topologically nontrivial phase close to the isotropic limit.

around ty/tx ≈ 1. The momentum distribution in a specific
wire is experimentally accessible in various cold atom experi-
ments with current techniques, for example, by time-of-flight
measurements.

We interpret the sudden change around ty/tx ≈ 0.6 as fur-
ther evidence for the 1/2 Laughlin phase close to the isotropic
limit indicated by the characteristic chiral edge mode. This
mode also manifests itself in the presence of a chiral edge
current for which we also find numerical evidence in our
simulations (see Supplemental Material [51]).

VI. TOPOLOGICAL CLASSIFICATION: MANY-BODY
CHERN NUMBER

In order to provide an unambiguous topological classi-
fication of the ground state, we determine the many-body
Chern number [73,74] as a function of the anisotropic hop-
ping strength. In particular, we use the method proposed by
Dehghani et al. [75] to extract the many-body Chern number
from a single ground-state wave function. To this end, we
perform DMRG calculations on cylinders of coupled chains
with periodic boundary conditions in the y direction (see Sup-
plemental Material [51]).

In Fig. 4, we find that for weakly coupled chains the many-
body Chern number vanishes, confirming our understanding
of the topologically trivial phase in this regime. On the other
hand, around ty/tx ≈ 1 we find the many-body Chern number
to be C = 1, hence resulting in the nontrivial Hall response
σH = 1

2
e2

h expected for the 1/2 Laughlin state. This is in agree-
ment with the other observables discussed here and gives
direct evidence for the topological nature of the ground state
close to the isotropic limit.

VII. CONCLUSIONS

The bosonic 1/2 Laughlin state can be realized in three
or more coupled chains subject to a magnetic field close to
the isotropic limit. The transition from a topologically trivial
phase to this topologically ordered phase as the interchain
hopping strength is tuned can be seen from various observ-
ables. Most prominently, we have found the central charge
to provide clear evidence in the strong-coupling phase by
dropping to the expected value cLN = 1 for the Laughlin
state. Furthermore, we have shown that in this regime the
number entropy Sn gives a good estimate for the central
charge. The number entropy can be extracted from snapshots
generated routinely by existing quantum gas microscopes.
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Other experimentally accessible observables like on-site cor-
relations, the momentum distribution, and chiral currents
confirm the transition from the trivial to the Laughlin phase.
Finally, we have identified the topological nature of the
strong-coupling phase by extracting the many-body Chern
number.

The system studied here, consisting of tunably coupled
chains, provides a promising route towards the adiabatic
preparation, detection, and characterization of interacting
topological states of matter using existing experimental tech-
niques. Measuring the entanglement entropy using more than
one basis has been proposed [76,77] and might give further
insight into similar systems.
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