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Thermal topological phase transition in SnTe from ab initio calculations
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One of the key issues in the physics of topological insulators is whether the topologically nontrivial properties
survive at finite temperatures and, if so, whether they disappear only at the temperature of topological gap
closing. Here, we study this problem, using quantum fidelity as a measure, by means of ab initio methods
supplemented by an effective dissipative theory built on the top of the ab initio electron and phonon band
structures. In the case of SnTe, the prototypical crystal topological insulator, we reveal the presence of a
characteristic temperature, much lower than the gap-closing one, that marks a loss of coherence of the topological
state. The transition is not present in a purely electronic system but it appears once we invoke coupling with a
dissipative bosonic bath. Features in the dependence with temperature of the fidelity susceptibility can be related
to changes in the band curvature, but signatures of a topological phase transition appear in the fidelity only
though the nonadiabatic coupling with soft phonons. Our argument is valid for valley topological insulators, but
in principle can be generalized to the broader class of topological insulators which host any symmetry-breaking
boson.
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Introduction. The theoretical description [1] and subse-
quent observation [2] of topological states in the early 2000s
have dramatically changed the landscape of research in con-
densed matter physics. Thousands of theoretical papers have
been published on this subject, with an overwhelming ma-
jority dedicated to the properties of zero-temperature model
systems [3]. The question of finite-temperature effects is a
very difficult one and has been put in the spotlight only a few
years ago [4,5]. Naturally, the issue of the theoretical treat-
ment of thermal effects in topological insulators is a pressing
one since all the experiments are carried out at finite tempera-
ture. However, the standard Ginzburg-Landau theory of phase
transitions is inapplicable here—one cannot define a local or-
der parameter, instead one must work with invariants defined
along entire trajectories in the material’s parameter space [6].
There have been so far several theoretical attempts to tackle
this problem. From a single-particle density functional theory
(DFT) perspective, attempts to assess the topological critical
temperature are generally based on the closing of the gap
at some finite temperature [7–9]. The conjuncture made in
these papers is that topological invariants stay unaltered up to
this point and the entire physics is determined by the single-
particle gap inversion. Since the topological invariants result
from the collective behavior of the entire electronic liquid, this
assumption needs to be taken with care. The picture provided
by many-body methods is in fact strikingly different. First
attempts used a concept of Uhlmann parallel transport which
generalized a concept of a finite-temperature Chern number

and aimed to compute its temperature dependence [4]. These
studies were initially limited to quantum one-dimensional
(1D) systems [4,10] and later generalized to 2D [5]. This kind
of analysis, applied to model systems, revealed that the critical
temperature can be up to 70% lower than the mean-field crit-
ical temperature [4]. There have also been attempts to apply
Hill’s thermodynamics (small quantum system thermodynam-
ics) to capture the influence of the thermodynamic potential of
the boundary terms [6,11]. These numerical studies confirmed
the results of the Uhlmann conjecture in model 2D systems
and extended the observations to the 3D case. Recently, the
use of fidelity was proposed [12,13] as a suitable tool to probe
the quantum phase transitions even in systems with nonlocal
order parameters. An analysis based on this magnitude sug-
gests that in a topological model the fidelity only shows signs
of a phase transition at zero temperature [12,13]. This result
would imply that topological states are a characteristic of
zero-temperature states and disappear in a crossover manner
as the temperature increases, revealing a lack of protection
against thermal fluctuations of the topological state of matter.
However, in Ref. [12] only Hamiltonians with temperature-
independent parameters were considered.

Here, we address this issue by computing the fidelity on
a realistic system with a temperature-dependent electronic
structure. We consider a topological insulator protected by
the valley (mirror) symmetry of the underlying crystal lattice
as we expect that in this case the contributions from thermal
fluctuations of the lattice will manifest particularly strongly.
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FIG. 1. Detail of the band structure around the L point showing
the evolution of the band structure of SnTe with temperature, as
calculated with DFT (the band structure along a full path across
the Brillouin zone can be found in the Supplemental Material [14]).
The temperature T varies from 100 to 1900 K in 200-K steps. Inset:
Group velocities of electrons in the conduction band as a function of
temperature.

We study SnTe, which is perhaps the simplest compound of
this kind. Being material specific allows us to perform a joint
study that builds an extension of ab initio results by an exact
analytic calculation of drag effects.

Band structure as provided by DFT. Our starting point is
the density functional theory (DFT) band structure computed
using the Perdew-Burke-Ernzerhof (PBE) parametrization for
the exchange and correlation functional [14]. The choice
of the PBE functional over higher-order methods, such as
hybrid functionals or GW , is justified by previous studies,
which show that the effect of additional electronic correlation
and band shift due to an electron-phonon interaction tend to
partially cancel each other [9,15]. The explicit changes of
the electronic structure due to thermal expansion are taken
into account by performing calculations at the temperature-
dependent lattice parameter, obtained from the linear thermal
expansion coefficient as calculated in Ref. [9]. The electronic
dispersion curves near the band edges at L are displayed in
Fig. 1 as a function of temperature. At low temperatures the
bottom of the conduction is shifted with respect to the L point,
showing a “Mexican-hat”-like feature that, in SnTe, reflects
the topological character that results from the inversion of
bands of opposite parity close to the L point [16]. As the
temperature increases, and the material expands, the gap tends
to close. In the process, the “Mexican-hat”-like minimum dis-
appears and the dispersion becomes linear near the crossover.
Neglecting the effect of electron-phonon coupling, according
to the DFT simulations the closing of the gap would occur
at a temperature of around 1700 K due to lattice expansion
exclusively, a temperature larger than the melting temperature
of the material (1063 K).

Computing fidelity. We follow the method introduced in
Ref. [12] to track the topological phase transition and use the
fidelity, defined as

F (ρA, ρB) = Tr

[√√
ρAρB

√
ρA

]
, (1)
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FIG. 2. Fidelity as a function of temperature computed from the
single-particle DFT density matrix. Data for temperatures above
the melting point, and therefore not experimentally accessible, are
plotted as a dashed line.

where ρI are the corresponding density matrices. The fidelity
is a generalization of the overlap for mixed states and mea-
sures the similarity between two quantum states [17]. At a
phase transition the fidelity drops as a result of the drastic
changes in the quantum state of the system [18]. Here, we
use the fidelity to measure the proximity between states of
the system at T and T + δT in order to detect a hypothetical
phase transition at finite temperature.

We first compute the single-particle fidelity as a func-
tion of temperature using the density matrices obtained from
DFT calculations. The single-particle density matrix is readily
available in many DFT codes, where it is commonly expressed
in the basis of the basis functions used to expand the Kohn-
Sham states. In this basis the density matrix takes the form

ρ =
∑
ν,μ

ρν,μ|ν〉〈μ|, (2)

with

ρν,μ =
∑
nk

fnkcν,nkc∗
μ,nk, (3)

where {|ν〉, |μ〉} are basis orbitals, nk denotes a Kohn-Sham
state, and fnk is the occupation function.

In the analysis of the topological character of the electronic
structure based on zero-temperature topological invariants,
temperature effects are usually limited to lattice expansion and
band renormalization due to electron-phonon effects [7–9].
Instead, the analysis based on the quantum fidelity (den-
sity matrices) also accounts for changes in the topological
character due to the partial occupation of eigenvalues of op-
posite parity. Remarkably, despite the notable changes in the
band dispersion of the material in this temperature range, the
single-particle fidelity (shown in Fig. 2) is not able to capture
any sign of the transition, even at the crossover temperature
(∼1700 K).

Dissipative environment. In SnTe the crystal lattice deter-
mines the mirror symmetry by which the topological invariant
is defined. At low temperature the material undergoes a fer-
roelectric phase transition, and electron-phonon coupling is
expected to be substantial (as is the case in similar materi-
als [19]), so it is therefore necessary to introduce the lattice
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dynamics explicitly into our considerations. The motion of
atoms associated with a soft transverse optical (TO) mode
at � violates the mirror symmetry with respect to which the
topological invariant is defined. If dissipation is introduced by
a dynamic electron-phonon coupling, then part of the elec-
tronic density is brought into an incoherent fluctuating state
and the topological state is undefined. Here, we develop a
model for an electron gas with a realistic dispersion given by
the DFT bands in Fig. 1 interacting nonadiabatically with a
phonon bath. Such dissipative systems are known to host a
phase transition [20,21]. The Hamiltonian for the electron plus
phonon system is

H = HDFT[c†
kck] +

∑
k,q

g(q)c†
kck−q(a†

q + a−q ) +
∑

q

ωqa†
qaq,

(4)
where ωq = cphq + ω0 is the TO phonon dispersion (a linear
dispersion is a valid approximation over a relatively wide
range of q around � for the TO mode in SnTe [22]), and
g(q) is the electron-phonon coupling. We take g(q) ∼ qα , a
generalization of a displacement potential. In SnTe, for the
TO phonon mode α < 1 as evidenced by a DFT study [23].
The ladder vertex correction can further renormalize the value
of α [24].

A solution of Eq. (4) at a given temperature T0 would
be a specific state |ρtot〉 = |ρel, nph〉. Since the TO phonons
are coupled with other branches (which in turn also interact
with lattice dislocations, interfaces, etc.), this is a dissipative
system. We refrain from solving this nontrivial problem [25],
as we are interested only in the change of the incoherent part
of electronic density as the temperature changes [13,20]. The
form of this Hamiltonian will hold as long as there is no
structural phase transition, which for SnTe above 100 K is
justified.

The time derivative of a density matrix is [26]

d ρ̂el

dt
= ı[Ĥ , ρ̂el] + R[ρ̂el], (5)

a general form that encapsulates the Lindbladian superopera-
tor [27] for a specific choice of a relaxation functional R[ρ̂].
It has been shown [28] that, in general, for any steady state
the norm of the left-hand side (LHS) of Eq. (5) (e.g., | · · · | =
Tr ρ̂el) is minimized, which implies that currents flowing in the
steady state are minimized. Even without detailed knowledge
of ρ̂el, this condition suffices to state that the variation around
the steady state, δρel, of the LHS must be equal to zero. By
noting that only the second term in the Hamiltonian in Eq. (4)

does not commute with ρ̂el and dividing the relaxation into
unitary adiabatic time evolution and dissipative nonadiabatic
components, we can write the following phenomenological
master equation for the variation of the density with tempera-
ture:

〈δ(F̂abs − F̂emit )〉|k,q − q(VF (k) − cph)δρinc(k, q; T )

− 1qδρcoh(k, q; T ) = 0. (6)

Here, we have assumed that the qth phonon has been in-
volved in the process, through absorption/emission operators
F̂abs,emit, VF is the Fermi velocity, and ρcoh and ρinc are the
coherent and incoherent parts of the density matrix. We have
assumed a stationary condition dρ/dt = 0 and the two terms
in the second line of Eq. (6) compensate the modified thermal
“drag” force. This equation can be interpreted as an action of
the Lindbladian superoperator on the density matrix L̂{δρ} =
0. The first term in the Lindbladian is a scattering a term F̂i ∼
[H, ρtot] and, according to Eq. (4), electron liquid can con-
stantly absorb and emit phonons [29]. We first consider a case
with a single phononic event when the emission-absorption
drag “force” F̂ is given by an analog of the Fermi golden rule,

〈F̂abs − F̂emit〉|k,q = gel-ph(q)Nq( fk−q(1 − fk ) − fk (1 − fk−q)),
(7)

where we took mean-field averages [14], i.e., Nq and fk are the
Bose-Einstein and Fermi-Dirac distribution functions, respec-
tively. Increasing the temperature by dT changes the balance
between absorption and emission by an amount proportional
to a derivative of the Bose-Einstein distribution.

In the second term of the Lindbladian we have distin-
guished adiabatic (coherent δρcoh) and nonadiabatic (incoher-
ent δρinc) relaxation channels of fermionic density, with the
nonadiabatic one depending on a difference between electron
and phonon velocities. We make the conjecture that, since
changes (due to the phonon environment) in the diagonal ele-
ments of the density matrix (a trace of which is proportional
to fidelity) are by definition caused by dissipation, only the
nonadiabatic processes will cause δF (T ) �= 0: If in Eq. (1)
one takes ρB = ρA + δρinc and then Taylor expands, one finds
that the fidelity susceptibility χF (T ) = d log[F (T )]/dT ∼
dρinc/dT .

Since, in Eq. (1), we are interested only in the electronic
part of the density matrix, ρel, we integrate out Eq. (7) over
all possible q (all possible single-phonon emission/absorption

events), i.e., dρ
(1)
inc

dT = ∑
q

dρinc

dnq

dnq

dT , which can be performed an-
alytically:

dρ
(1)
inc (�k, T ; EDFT(T ))

dT
= vF (�k, T )

vF (�k, T ) − cph(T )
ḡel-ph f

(
EDFT(�k, T )

kBT

)
{	(exp{[−EDFT(�k, T ) − ω0]/kBT }, α, 1 − 2cph/vF (�k, T ))

−	(exp{[−EDFT(�k, T ) + ω0]/kBT }, α, 1 + 2cph/vF (�k, T ))}. (8)

We require α > 0 as then the generalized Fermi integral over
q turns into an analytic expression involving the Lerch tran-
scendent function, 	(, , ), which results from integrating out
(1 − fk−q) times the Boltzmann distribution times the power
law qα over a Hankel contour. This formula generalizes past

results for Fermi integrals that were expressed as polyloga-
rithms. The advantage of Eq. (8) is that it does not constrain
any of cph/V or gel-ph/V to a small parameter range (nonadi-
abatic regime), nor does it make any assumptions on thermal
distributions [hence it is valid in the intermediate temperature
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FIG. 3. An overall T dependence of quantum fidelity derivative
(with a minus sign) obtained by truncating the interactions at (n =
10)th order and integrating over the entire BZ to find dρ

(n)
inc (T )/dT ∼

χF (T ). We see a peak indicating the phase transition.

regime where f (E ) is certainly not a step function]. Fur-
thermore, the accuracy of this semianalytic approach is not
critically dependent on a density of reciprocal space sampling,
as it would have been the case in a purely numerical approach.

The above calculation gives a probability of the electronic
density shifting into the incoherent part due to an interaction
with a single phonon. Beyond the weak-coupling regime [30]
we are interested in a recursive process, where the electronic
density shifted by the nth interaction is consecutively distorted
by the (n + 1)th interaction. We then need to solve such a
recursion problem, i.e., the stationary condition expressed in
Eq. (6), couples the |nph〉 state with |nph ± 1〉 states, hence
to find the overall stationary state L̂{δρ (∞)} = 0 we need to
find the kernel of such a tridiagonal matrix. The solution
δρ∞

inc(k, q; T ) is a continued fraction. The result from Eq. (8),
dρ

(1)
inc (�k, T ; EDFT(T ))/dT , can be simply incorporated into the

continuous fraction solution for the derivative

dρ
(n+1)
inc (�k, T ; EDFT(T ))

dT

= Kn
m=1

ḡm
el-ph

dρ
(1)
inc (�k,T ;EDFT(T ))

dT

1 + ḡm
el-ph

dρ
(1)
inc (�k± �q0,T ;EDFT(�k± �q0 )±mω0 )

dT

, (9)

where Kn
m=1 is a Gauss continued fraction symbol. χF is then

calculated by entering the DFT electronic band structure and
phonon velocity in Eq. (8) and recursively applying Eq. (9)
until convergence is achieved. The fidelity susceptibility plot-
ted in Fig. 3 peaks between 500 and 700 K, indicating a phase
transition of the electron gas, driven by a loss of coherence
through the coupling with the TO phonons. The reason for this
is that in regions of the Brillouin zone (BZ) with extremely
low Fermi velocity the drag effect is the strongest and ca-
pable of nonadiabatically pulling some carriers away from a
coherent single-particle manifold into states strongly coupled
with phonons which no longer have a well-defined symmetry
property. This mechanism is confirmed by the momentum-
resolved χF (T ), shown in Fig. 4, where we observe a close
connection between χF (T ) and the shape of the conduction
band: The manifolds of largest drag are either located close to

FIG. 4. Momentum-resolved fidelity susceptibility χF (T )
shown in a region of the BZ around the L point. In the main panel
we show isosurfaces corresponding to χF (T ) = 0.02 for T = 300 K
(blue), 500 K (pink), and 900 K (green). In the first two cases
there are two minima and for 500 K the isosurface is the largest.
The inset shows three isosurfaces χF (T ) = 0.3, χF (T ) = 0.03,
χF (T ) = 0.01 for T = 500 K, showing that the largest values of
drag are indeed concentrated close to the minima.

the minimum (minima) or at a large bone-shaped zone at the
temperature for which the band curvature changes.

Discussion and conclusions. Our results show, using quan-
tum fidelity as a measure, that a finite-temperature thermal
topological phase transition exists. This transition, due to loss
of coherence of the topological state, is predicted to occur at
a temperature lower than the melting one and much lower
than the gap-closing temperature as calculated with DFT
(∼1700 K).

The position of the peak in the fidelity susceptibility is
robust and remains unaffected by small to moderate changes
of all renormalizable parameters such as gel-ph, cph, the expo-
nent α, or gap 
(T ), which implies that it is a generic, stable
feature of the system that exist in the regime of intermediate
electron-phonon coupling. Considering band shifts due to ad-
ditional correlation effects and electron-phonon coupling in
the starting single-particle electronic structure might slightly
shift the value of the transition temperature, but based on
previous works we do not expect this to qualitatively affect
the results presented here [9]. More specifically, we can dis-
tinguish two additional effects. First, the imaginary part of
electron-phonon self-energy �el-ph may relax strict kinematic
conditions for electron-phonon scattering in Eq. (8) and thus
increase the drag. We note that in Ref. [9] the maximum of
�el-ph(T ) falls at T ≈ 700 K, hence this shall enhance the
peak in Fig. 3. Second, there might be an additional contri-
bution to drag due to topological states [31] present, e.g., on
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dislocations, an effect that is sample dependent. We note that
at the transition these topological states disappear, and thus the
additional contributions disappear as well, therefore we expect
the signatures of the transition to be even more pronounced.

Our formalism can be generalized to any boson that
couples with electrons and violates the symmetry property
defining the topological class. This may be low-energy in-
terband plasmons for systems defined by parity symmetry,
or paramagnons for systems with strong Rashba interactions.
The only conditions that the boson must fulfill are the gel-ph ∼
qα with α > 0 and its dispersive character ω(q) = cphq for
a range of q. While these are typical for acoustic phonons,
they are also obeyed by symmetry-breaking TO phonons

in some incipient ferroelectrics. While the position of the
phase transition is determined by the change of band curva-
ture, the amplitude of the associated peak is related to the
TO phonon’s cph and gel-ph. Overall, the topological thermal
phase transition should apply to a much broader class of
materials than only the topological crystal insulators studied
here.
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Lett. 119, 015702 (2017).

[13] S. T. Amin, B. Mera, C. Vlachou, N. Paunković, and V. R.
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