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Uranium-mercury complex antiferromagnet: UHg6.4
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Crystallographically complex compounds containing 4 f and 5 f electrons often have peculiar chemical and
physical properties. In this work we present discovery and characterization of a new material UHg6.4, located
at the border to complex intermetallics. This material crystallizes in the LaHg6.4 structure type, which can
be represented by La/U-centered polyhedra with coordination numbers of 13 and 14. Much like the LaHg6.4

analog, UHg6.4 shows strong crystallographic disorder, in particular for Hg atoms in the channels along [001].
The UHg6.4 compound orders antiferromagnetically below TN1 = 35.5 ± 1 K and displays another transition at
TN2 = 47.3 ± 1 K, which is likely also antiferromagnetic. Both transitions are only slightly affected by magnetic
field. Given high air sensitivity of UHg6.4, an exceptional experimental environment for sample synthesis and
characterization was necessary in order to comprehensively describe the chemical and physical properties of this
system.

DOI: 10.1103/PhysRevB.106.L060412

I. INTRODUCTION

Materials which contain elements from the bottom of the
periodic table often exhibits interesting chemical and physical
properties, which are deeply interrelated. The role of crys-
tallographic disorder—either intrinsic or induced—is not yet
fully understood [1–8]. In particular, heavy-fermion materials
seem to be strongly influenced by the minute changes in
their crystalline arrangement [8–15]. This motivates design
and discovery of new heavy-fermion systems. In the previous
work [16] we have shown that crystallographically complex
materials offer much promise when it comes to the targeted
discovery of new heavy-fermion compounds. Our empirical
approach relied on the fulfillment of three parameters, which
could perhaps be beneficial for the enhancement of the ef-
fective electron mass in uranium-based materials. By looking
at compounds that have a coordination number above 12,
uranium mass percentage under 40%, and overall shortest
uranium interatomic distance above 3 Å, we were able to
correctly identify a new heavy-fermion U23Hg88 [16]. This
compound orders antiferromagnetically below TN = 2.2 K
and displays a very large effective electron mass enhance-
ment, as evident from γn = 630 mJ mol−1 U K−2 [16].

Motivated by the success of this approach, we have used it
to identify a new heavy-fermion candidate UHg6.4. The crystal
structure of this material fulfills the above criteria, more-
over, it is located on the border between crystallographically
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simple and complex intermetallic compounds, see Fig. 1.
While UHg2 and UHg3 host 3 and 8 atoms per unit cell,
respectively, the UHg6.4 and U23Hg88 systems have 59 and
444 atoms per unit cell, respectively. However, a compre-
hensive characterization of single crystalline UHg6.4 revealed
that this material likely does not exhibit an enhanced ef-
fective electron mass. UHg6.4 orders antiferromagnetically
below TN1 = 35.5 ± 1 K with another transition observed at
TN2 = 47.3 ± 1 K. Both transitions are only slightly affected
by application of the magnetic field.

II. MATERIALS AND METHODS

When it comes to mercury-based materials, much
care must be taken during their synthesis, handling, and
characterization—from toxicity concerns to their high chem-
ical reactivity—these systems pose several experimental
challenges [16–18]. The complexity of work on mercury-
based materials is reflected in a low number of re-
ported systems. For example, among mercury-actinide bi-
nary compounds, only three U-Hg [16,19–23], four Th-Hg
[24–27], and one Pu-Hg [28] system have been found to exist
so far.

All sample preparation and handling was performed in
the specialized laboratory, equipped with an Ar-filled glove
box system [MBraun, p(H2O/O2) < 0.1 ppm] [29]. Single
crystals of UHg6.4 were synthesized from U powder (pre-
pared from sheet, Goodfellow, 99.98%) and Hg (ChemPur,
99.999%) using self-flux method. The U powder was prepared
via repeated hydrogenation/dehydrogenation cycles. The U
powder and Hg droplets, mixed in the 5:95 ratio, were sealed
in Ta tubes (volume of ≈2 cm3 for a sample mass of ≈1 g)
under Ar atmosphere. The sealed Ta tubes were heated to
500◦C, and then slowly cooled to room temperature over a
period of 10 days. Excess Hg flux was decanted at room
temperature via centrifugation. Some mercury could not be
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FIG. 1. Four uranium-mercury compounds arranged according
to their crystallographic complexity from the simplest (smallest num-
ber of atoms per unit cell, top) to the most complex (largest number
of atoms per unit cell, bottom). Note that while six unit cells are
shown for UHg2 and UHg3, only one is shown for UHg6.4 and
U23Hg88.

completely removed from the surface of the crystals. The
resultant crystals had silver luster and needlelike morphol-
ogy, with some examples shown in Fig. 2. Similar to the
other U-Hg binary compounds [16,20,21,30–32], the UHg6.4
phase exhibits extreme air and moisture sensitivity, resulting
in immediate decomposition even after short exposure to air.
Additionally, the UHg6.4 crystals are rather fragile, breaking
easily when touched by tweezers. Four batches of UHg6.4 have
been prepared for the current study in the same exact way.
However, it appears some variation between crystals exists, as
shown in Fig. 5(a). This difference can be due to the varia-
tion of the Hg concentration, as a result of crystallographic
disorder (see Fig. 3, Sec. III A, and Ref. [33]), as well as
small amount of elemental Hg that cannot be removed from
the surface and the interior of the crystals.

Powder x-ray diffraction was performed on a Huber G670
Image plate Guinier camera with a Ge-monochromator (Cu
Kα1, λ = 1.54056 Å). Phase identification was done using the
WinXPow software [34]. The lattice parameters were deter-

100 µm

50 µm

FIG. 2. Backscatter electron micrographs of UHg6.4 single crys-
tals. Minute exposure to air results in an immediate degradation of
the sample, as evidenced by the rough surface of the single crystals
and microscopic droplets of mercury, appearing on their surface.
Cracks are consistent with mechanical fragility.

mined by a least-squares refinement using the peak positions,
extracted by profile fitting. Single crystal diffraction data were
collected on small single crystals (≈ 50 μm in size) using a
Rigaku AFC7 diffractometer, equipped with a Saturn 724+
CCD detector and a Mo Kα radiation source (λ = 0.71073
Å). The WinCSD software [35] was used for crystallographic
analysis (see Tables I and II).

Differential thermal analysis (DTA) was performed on
a Netzsch DTA 404 PC in the range from 30 to 500 ◦C,
in a sealed quartz ampoule in a steady Ar flow with a
heating/cooling rate of 5 K min−1. The ampoule was sealed
under vacuum, while being cooled in LN2. An empty quartz
ampoule of the same size was used for background subtrac-
tion. The resultant data are shown in Fig. S1 [36], the onset
of the decomposition around 460 ◦C of UHg6.4 is marked
by vertical arrows and is comparable to other U-Hg binaries
[16,21,31,37].

The magnetic properties were studied using a Quan-
tum Design (QD) Magnetic Property Measurement System
for the temperature range from T = 1.8 K to T = 300 K
and for applied magnetic fields up to H = 7 T. The in-
verse magnetic susceptibility data were fit to the Curie-Weiss
law, after a temperature-independent contribution has been
subtracted (0.5 × 10−3 � χ0 � 1.3 × 10−3 emu mol−1

F.U.). The
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FIG. 3. Crystal structure determination of UHg6.4: (a) Upper
panel: partial crystal structure involving the U1-U2 and Hg1-Hg7
positions (see Table II). (a) Lower panel: Distribution of the differ-
ence electron density in the part of (200) plane marked in red in
the upper panel together with the positions Hg5 and Hg7. (b) Upper
panel: Distribution of the difference electron density in the part of
(200) plane marked in red in the lower panel and the projection of
the crystal structure involving the split positions around Hg5 and
Hg7, as well as the split positions Hg8 and Hg9 within the channel.
(c) Projection of the structure along [010] visualizing the channels
running along [001].

specific heat data were collected on a QD Physical Prop-
erty Measurement System from T = 0.4 K to T = 100 K for
magnetic fields up to H = 9 T. The values of the ordering tem-
perature were taken from the peak value in the (i) dMT/dT
[Fig. 7(a)] and (ii) dCp/dT [Fig. 7(b)]. Given high air sensitiv-

TABLE I. Crystallographic data for UHg6.4 (LaHg6.4 structure
type).

Crystal system Orthorhombic
Space group Cmcm (No. 63)
Formula units per cell Z = 8
Unit cell parameters
a 9.629(2) Å
b 28.779(7) Å
c 4.943(1) Å
Unit cell volume, V 1370.5(5) Å3

Calculated density 14.8 g cm−3

Crystal form platelike
Crystal size 20 × 90 × 150 μm3

Diffraction system RIGAKU AFC7
Detector Saturn 724+ CCD
Radiation type, λ Mo Kα, 0.71073 Å
Scan; step/deg; N(images) φ, 0.6, 600
Maximal 2θ 64◦

Range in h, k, l −13 � h � 14,
−42 � k � 34,

−3 � l � 7
Absorption correction multiscan + numerical
N (hkl ) measured 4878
N (hkl ) unique 1362
N (hkl ) observed 1027
Rint 0.049
Refined parameters 71
Residual peaks −1.08/1.45e A−3

RF , Rw 0.049, 0.049

ity, coupled with mechanical fragility of the UHg6.4 crystals,
it was not possible to carry out any resistivity measurements.

III. RESULTS AND DISCUSSION

A. Crystal structure

Mercury-based compounds and amalgams often host pecu-
liar crystallographic environments [16,23,38–47] and display
unusual bonding features [44,48–54]. As a result, some of
these materials show peculiar superconducting [33,52,55–68]
or magnetic [16,32,69–73] ground states.

The newly discovered UHg6.4 is the Hg-richest phase in
the U-Hg system, crystallizing in the LaHg6.4 structure type.
While the first report about the existence of the LaHg6.4
structure type suggested orthorhombic crystal structure and
correctly identified lattice parameters in 1976 [74], the com-
plete structural characterization of LaHg6.4 has been missing
for nearly 50 years [33]. This can be explained by the expe-
riential difficulty of Hg-based materials—in addition to high
x-ray absorption, the UHg6.4 compound is highly air sensitive,
decomposing immediately even after minute exposure to air.
In our recent work [33] we were able to comprehensively
describe the structural and physical properties of LaHg6.4.
This compound crystallizes in the Cmcm space group [a =
9.779(2) Å, b = 28.891(4) Å, and c = 5.0012(8) Å] and en-
ters superconducting state below Tc = 2.4 K. Strong disorder
was found to exist in the structure of LaHg6.4, with partially
occupied chains of mercury propagating along the [001] di-
rection [33].
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TABLE II. Atomic coordinates, Wyckoff sites, and isotropic displacement parameters (Å2) for UHg6.4, obtained from the single crystal
x-ray refinement.

Atom Wyckoff x/a y/b z/c Biso/eq Occupancy
site

U1 4c 1/2 0.07663(3) 3/4 0.89(2) 1.0
U2 4c 1/2 0.22532(3) 1/4 1.03(2) 1.0
Hg1 8g 0.32359(9) 0.18043(3) 3/4 1.60(2) 1.0
Hg2 8g 0.33352(9) 0.12606(2) 1/4 1.35(2) 1.0
Hg3 8g 0.33343(9) 0.02528(2) 1/4 1.45(2) 1.0
Hg4 8g 0.15609(9) 0.21553(3) 1/4 1.55(2) 1.0
Hg5 4c 0 0.16555(4) 3/4 1.41 0.77(1)
Hg51 8 f 0 0.1645(2) 0.668(1) 1.33 0.115
Hg6 8g 0.1718(2) 0.07637(4) 3/4 1.30 0.597(3)
Hg61 16h 0.1686(4) 0.07092(9) 0.7019(6) 1.30 0.151(3)
Hg62 16h 0.172(2) 0.0839(4) 0.682(2) 1.30 0.038(3)
Hg63 8g 0.165(2) 0.0641(5) 3/4 1.30 0.053(2)
Hg7 4c 0 0.89423(7) 1/4 2.01(4) 0.584(10)
Hg71 8 f 0 0.0941(2) 0.257(6) 2.439 0.12(1)
Hg72 8 f 0 0.1166(3) 0.267(3) 1.717 0.08(1)
Hg8 8 f 1/2 0.5096(1) 0.3153(7) 1.73(15) 0.187(6)
Hg9 8 f 1/2 0.5032(2) 0.4404(7) 1.7(2) 0.177(6)

The crystal structure of UHg6.4 was determined from the
x-ray single crystal diffraction data. The crystallographic in-
formation is presented in Table I. Application of a charge-flip
technique allows us to determine the ordered part of the crys-
tal structure including the U1–U2 and Hg1–Hg7 positions
[Fig. 3(a), upper panel]. The relatively low R value of ap-
proximately 0.076 hints toward a reasonable model. A striking
feature of this model is the clearly enhanced values of the
atomic displacement parameters for the Hg5–Hg7 positions.
Calculation of the different electron density at this stage re-
vealed several additional maxima around Hg5, Hg7 [Fig. 3(a),
lower panel], and Hg6 position, indicating strong disorder in
the vicinity of these sites. Furthermore, the quasicontinuous
distribution was observed around 00z and 1

2
1
2 z axes. In order

to describe this distribution, two split sites were used around
Hg5 position, three for Hg7, and four for Hg6 positions,
respectively. Furthermore, two split sites, Hg8 and Hg9, were
necessary for describing the difference density in the channels
00z and 1

2
1
2 z [Fig. 3(b), upper panel]. The whole disorder in

the crystal structure [Fig. 3(b), lower panel; Fig. 3(c)] is obvi-
ously caused by the incommensurability of the basic structure
and the Hg substructure within the channels. Depending on
the local positions of the channel atoms, the channel wall
breathes and adjusts its local arrangement to the channel
fillers. This leads also to the noninteger composition UHg6.4
with ∼59 atoms in the unit cell.

The crystallographic disorder in UHg6.4 is similar to the
recently discovered in the lanthanum analog [33]. In LaHg6.4,
the disorder around the Hg5 and Hg6 positions was indicated
only by strong anisotropy of atomic displacement, for the Hg7
position, four split sites were necessary, and three sites were
detected in the channels. The stoichiometry of both uranium-
and lanthanum-containing materials is 1:6.4. The majority
of the Hg-Hg distances vary between 2.41 � d(Hg-Hg) � 3.92
Å, similar to what is observed in elemental Hg (d(Hg-Hg) =
2.99–3.46 Å).

Interestingly, the uranium-uranium shortest distance
d(U-U) = 4.94 Å is rather large (for example, in elemental
uranium d(U-U) = 2.75–3.43 Å). According to the Hill limit
[75], such large separation of the uranium atoms is likely to
yield a magnetic ground state, as shown in Sec. III B.

For the uranium atoms, two crystallographic positions ex-
ist. As summarized in Fig. 4, U1 is coordinated by 14 Hg
atoms in the form of bicapped hexagonal prisms (green),

U1 U2

(a)

(b)

FIG. 4. Crystal structure of UHg6.4: (a) The view of the crystal
structure in the polyhedral representation along the [001] direction.
(b) Whole structure represented by an arrangement of U-centered bi-
capped hexagonal prism (U1, gray, left) and modified cuboctahedra,
where one apex is replaced by two Hg atoms (U2, red, right).
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FIG. 5. Magnetic properties of UHg6.4: (a) Magnetic suscep-
tibility as a function of temperature in H = 0.1 T for four UHg6.4

samples. All samples exhibit two consecutive magnetic transitions—
one at TN1 = 35.5 ± 1 K and another at TN2 = 47.3 ± 1 K.
(b) Inverse magnetic susceptibility of UHg6.4 for four different
samples.

while U2 is coordinated by 13 Hg atoms (red). The coordi-
nation of U2 can be described as a modified cuboctahedron,
where one apex is replaced by two Hg atoms. In comparison,

FIG. 6. Temperature-dependent specific heat data of UHg6.4: as-
measured data (red) and the data after the LaHg6.4 nonmagnetic
analog has been subtracted (orange). Inset shows low-temperature
region of the Cp/T vs T 2 plot.

in U23Hg88, uranium atoms have regular cuboctahedra as co-
ordination polyhedra [16].

B. Magnetic properties

Among U-Hg compounds, physical and chemical proper-
ties of UHg2 [19–21], UHg3 [20–22], and U23Hg88 [16,23]
have been studied in detail. Interestingly, all three U-Hg com-
pounds order antiferromagnetically below TN1 = 80 K (UHg2
[16,76,77]), TN1 = 15 K (UHg3 [16,32,77,78]), and TN1 =
2.2 K (U23Hg88 [16]).

Temperature-dependent magnetic susceptibility and spe-
cific heat of UHg6.4 are shown in Figs. 5 and 6, respectively.
It is important to note that some variation exists between four
batches of the UHg6.4 samples, prepared for the current study.
While all four samples exhibit two consecutive magnetic tran-
sitions, the shape of the low-temperature region as well as the
temperature-independent contribution χ0 are different. This
could arise from the partial occupancy of mercury, as a result
of crystallographic disorder observed in the structure (see
Fig. 3 and Ref. [33]), as well as a small amount of elemen-
tal Hg that cannot be removed from the crystals. From the
derivative of magnetization d (MT )/dT , shown in Fig. 5(b),
the values of the transition temperatures have been extracted
TN1 = 35.5 ± 1 K and TN2 = 47.3 ± 1 K (gray regions). After
subtraction of the temperature-independent contribution to the
magnetic susceptibility 0.5 × 10−3 � χ0 � 1.3 × 10−3 emu
mol−1

F.U. the inverse magnetic susceptibility of UHg6.4 was fit
to the Curie-Weiss law above T = 50 K, see Fig. 5(c). The re-
sultant effective moment is 2.79 � μeff � 3.38 μB U−1. Both
sign and magnitude of the Weiss temperature −41 � θW �
−24 K are consistent with an antiferromagnetic ordering of
UHg6.4 below TN1 = 35.5 ± 1 K.

The field-dependent magnetization data of UHg6.4 are
consistent with the antiferromagnetic ground state, as sum-
marized in Fig. S2 [36]. For both T = 1.8 K and T =
2 K isotherms, linear field dependence is observed, with no
distinguishable hysteresis. Linear behavior is also seen for
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FIG. 7. Evolution of magnetism in UHg6.4 with application of
magnetic field: (a) Magnetization and (b) specific heat of UHg6.4

in various magnetic fields. (c) The values of TN1 (squares) and TN1

(circles), extracted from magnetic [full symbols, (a)] and specific
heat [empty symbols, (b)] data.

the magnetic isotherm taken at T = 40 K (above TN1 but
below TN2). Both TN1 and TN2 transitions are only slightly
affected by an applied magnetic field, as shown by the
temperature-dependent magnetization [Fig. 7(a)] and specific
heat [Fig. 7(b)] data. An H-T phase diagram, presented in
Fig. 7(c), reveals a 12% and 6% suppression of TN1 and
TN2, respectively. Given high ordering temperature of UHg6.4,
it was not possible to extract the value of the Sommerfeld
coefficient γ from the paramagnetic state. However, low-
temperature specific heat data of UHg6.4 (Fig. 6, inset) can be
used to provide an upper-limit estimate from (i) an extrapola-
tion of the linear fit (γ0 = 39 mJ mol−1 U K−2) and (ii) the
lowest temperature value of Cp/T = 134 mJ mol−1 U K−2.
Both of these values are likely an overestimate, given the
magnetic contribution to the specific heat. It is therefore likely
that the intrinsic value of γ is not enhanced, compared to the
free electron scenario.

IV. CONCLUSIONS

In this work we present the discovery and characteriza-
tion of a new compound—a complex antiferromagnet UHg6.4.
It crystallizes in the LaHg6.4 structure type and exhibits
strong crystallographic disorder. The material orders anti-
ferromagnetically below TN1 = 35.5 ± 1 K with a successive
antiferromagnetic transition at TN2 = 47.3 ± 1 K. The reduc-
tion of both TN1 and TN2 are rather small even with magnetic
fields of up to 9 T. No enhancement of the effective electron
mass has been observed in UHg6.4, despite it fulfilling the
criteria proposed by our empirical analysis of uranium-based
heavy-fermion materials [16]. While the reason behind this
deviation remains to be revealed, one possibility is the effect
of crystallographic disorder, which is very prominent in the
UHg6.4 system. Further analysis of the role of disorder in
both heavy-fermion and non-heavy-fermion uranium-based
systems can pinpoint the exact relation between the two.

The UHg6.4 compound is located on the border of crystallo-
graphic complexity—between simple UHg2 and UHg3 on one
side and the complex U23Hg88 on the other side. By looking
at the crystallographic complexity across the U-Hg series, the
relation between the crystal chemistry and ground state prop-
erties is examined. Mercury-based compounds pose several
handling difficulties, therefore this work also contributes to
the advancement of the synthesis and characterization meth-
ods for highly air-sensitive materials.
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