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We study the S = 1
2 pyrochlore Heisenberg antiferromagnet in a magnetic field. Using large-scale density-

matrix renormalization group calculations for clusters with up to 128 spins, we find indications of a finite triplet
gap, causing a threshold field to nonzero magnetization in the magnetization curve. We obtain a robust saturation
field consistent with a magnon crystal, although the corresponding 5/6 magnetization plateau is very slim and
possibly unstable. Most remarkably, there is a pronounced and apparently robust 1/2 magnetization plateau
where the ground state breaks the rotational symmetry of the lattice, exhibiting oppositely polarized spins
on alternating kagome and triangular planes. Reminiscent of the kagome ice plateau of the pyrochlore Ising
antiferromagnet known as spin ice, it arises via a much more subtle “quantum order by disorder” mechanism.
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Introduction. The Heisenberg antiferromagnet on the py-
rochlore lattice is one of the most frustrated three-dimensional
magnets and, as such, a prime candidate for exotic, specif-
ically quantum spin liquid, behavior. Indeed, its classical
variants are topological magnets (classical spin liquids), ex-
hibiting a Coulomb phase [1–3] in the limit of low temperature
for both the Heisenberg [4] and Ising (spin ice) variants,
with the latter also hosting deconfined magnetic monopoles
as quasiparticles [5–8].

Due to the complexity of the quantum S = 1
2 problem

and concomitant lack of unbiased methods, the nature of the
ground state of the pyrochlore Heisenberg antiferromagnet
is still being discussed [9–18], with recent progress indicat-
ing that the ground state breaks inversion symmetry [19–21]
rather than being a quantum spin liquid.

In a related strand of work, the study of frustrated magnets
in an applied field [22] has turned up many interesting phe-
nomena, such as string excitations and Kasteleyn transitions,
dimensional reduction, and much more. Particularly promi-
nent has been the study of magnon crystals [23–29] and the
magnetization plateau [24,30–37], “incompressible” magnetic
states which may be stabilized when gaps between the ground
states of different magnetization sectors remain finite in the
thermodynamic limit.
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The classical variants exhibit either no magnetization
plateau for the Heisenberg model (at least in the absence of
magnetoelastic coupling [37–39]) or, in the Ising case, the
very rich physics of kagome ice [40–42]. The latter arises for a
field applied in a [111] direction, which has a large projection
onto the local Ising axes on one quarter of the spins, which
therefore quickly get polarized. The remaining three quarters
of the spins reside on kagome layers which enter a stable
partially polarized plateau at intermediate field strengths.

In the quantum limit, this magnetization process remains
largely unexplored [36,43–46], precisely due to the lack of
reliable methods alluded to above, while the two-dimensional
S = 1

2 kagome Heisenberg antiferromagnet has been thor-
oughly studied [24,27–35,47,48]. Although a material which

FIG. 1. Normalized ground state magnetization m =
〈 ψ0 |Sz

tot|ψ0〉 of different pyrochlore clusters as a function of
the external magnetic field h. The saturation magnetization is given
by the fully polarized state of N spins: msat = N/2. For the 64-site
cluster the upper half of the curve can be reliably calculated, while
for the largest clusters, 108 and 128, only the part of the curve at the
strongest fields can be reliably calculated.
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can be modeled by an SU(2) symmetric S = 1
2 Heisenberg

model is still lacking, higher-spin Heisenberg materials are
known, such as the S = 1 compound NaCaNi2F7 [49] and the
S = 3

2 compound CdCr2O4. In the latter compound a robust 1
2

magnetization plateau has been observed [38].
Here, we study the magnetization process of the S = 1

2
Heisenberg antiferromagnet from zero field to saturation us-
ing the density-matrix renormalization group (DMRG), which
recently turned out to be very useful in regard to the zero-field
properties [19]. Most saliently, we find an incompressible
magnetic phase with a 3:1 spin polarization ratio, signaled by
a robust plateau at half saturation.

The ground state corresponding to this plateau breaks
the rotational symmetry of the lattice. It exhibits polarized
kagome planes along the field direction and antipolarized
interplane sites. Unlike in kagome ice, this pattern of
3:1 disproportionation arises spontaneously, being selected
from an exponentially large number of possible 3:1
disproportionations in what may be termed a quantum order
by disorder mechanism. Also, the minority sublattice has neg-
ative, rather than enhanced, Zeeman energy—a spontaneous
instance of ferrimagnetism.

Furthermore, we obtain a value of the saturation field
which is consistent with what one obtains for the magnon
crystal state, an exact eigenstate of a range of frustrated
Heisenberg magnets [25].

Methods. We determine the field dependence of the ground
state magnetization for periodic clusters ranging from N = 32
to N = 128 spins, using SU(2) and U(1) DMRGs [50–53].
Although the DMRG is, by nature, a one-dimensional method
[54–58], it has been successfully used in two [59] and, re-
cently, three dimensions [19,60] by linearizing the system
along a snake’s path at the price of nonlocal interactions
within the snake. Conservation of the total spin Stot and its
z component Sz

tot allows us to target and optimize the ground
states within the concomitant symmetry sectors. We observe
that despite the fact that the SU(2) representation is very effi-
cient in higher-spin sectors, the convergence while optimizing
the energy is sometimes better when explicitly enforcing only
the U(1) spin symmetry. Since the wave function is repre-
sented as a matrix-product state with finite bond dimension,
extrapolation to infinite bond dimension is necessary. This
is usually done by extrapolating as a function of either the
truncation error or the variance [57]. We optimize the wave
function for small bond dimensions (�2000) using the two-
site DMRG algorithm, but for larger bond dimensions we
switch to the single-site variant with subspace expansion [52].
For the bond dimensions we used [up to ∼20 000 SU(2) or
U(1) states] the calculation of the full variance is impractical,
and we therefore extrapolate these energies to the error-free
limit as a function of the two-site variance. This quantity was
shown to be equally good compared to the truncation error
[61]; see Appendix A for further details.

Magnetization curve. We consider the ground state of the
S = 1

2 pyrochlore Heisenberg antiferromagnet

H = J
∑

〈i, j〉
�Si · �S j − h

∑

i

Sz
i (1)

in a finite magnetic field, h > 0. The spins are located on
a pyrochlore lattice defined by the fcc lattice vectors �a1 =
1
2 (1, 1, 0)T , �a2 = 1

2 (1, 0, 1)T , and �a3 = 1
2 (0, 1, 1)T , together

with four tetrahedral basis vectors, �b0 = 0 and �bi = 1
2 �ai.

This model conserves the total magnetization Sz
tot = ∑

i Sz
i

since [H, Sz
tot] = 0, and hence, the Hamiltonian decomposes

into symmetry sectors with fixed total magnetization m =
−N/2,−N/2 + 1 · · · N/2. This means that each eigenstate
|n〉m of H is also an eigenstate of Sz

tot: Sz
tot|n〉m = m|n〉m, and

therefore, the eigenstates of the Hamiltonian are independent
of the field h, and their energy En

m(h) is shifted with respect to
the zero-field value En

m(0) by En
m(h) = En

m(0) − hm.
In the absence of a field, h = 0, the ground state of the

Hamiltonian is in the m = 0 sector. For finite values of h > 0,
the energies of states exhibiting a finite magnetization m �=
0 will change by −hm and potentially become the overall
ground state of the system. This leads to the characteristic
jumps of the magnetization in Fig. 1. The field strength at
which a transition of the ground state magnetization from m
to m + 1 occurs is entirely determined by the minimal energy
of all states in sectors m and m + 1 in the absence of the field,
E0

m(h = 0) = minn En
m(h = 0). The field where E0

m+1(h) be-
comes lower than E0

m(h) is determined by E0
m+1(h) = E0

m(h),
i.e.,

E0
m+1(h = 0) − h(m + 1) = E0

m(h = 0) − hm, (2)

which is solved by h = E0
m+1(h = 0) − E0

m(h = 0). Multiple
transitions between m, m + 1, m + 2, . . . can coincide, lead-
ing to a larger change at a given field strength. To obtain the
full magnetization curve for a given cluster, we therefore have
to calculate the lowest energies in all magnetization sectors
at zero field using the DMRG, respecting the U (1) symmetry
associated with the conservation of Sz

tot. In fact, since the total
spin S2

tot also commutes with both H and Sz
tot, we can also use

the full SU(2) symmetry as mentioned above.
If the ground states of adjacent Sz

tot sectors are separated
by a gap in the thermodynamic limit, the magnetization will
remain locked into the lower magnetization sector for a range
of fields proportional to the gap, leading to a plateau in the
magnetization curve and hence an incompressible magnetic
state.

We display the resulting magnetization curves in Fig. 2
for different clusters ranging from 32 to 128 sites as shown
in Table I. Please note that for large clusters it is possible to
determine only the large-field part of the magnetization curve.

A prominent feature is the large jump of the magnetization
from its maximum to 5/6 msat near the saturation field hsat =
4J . The position and height of this jump can be understood us-
ing the same reasoning as in the case of kagome [28,31]. The
exact ground state of symmetry sectors with very large Sz

tot is a
crystal of localized magnon modes, while the ground state of
the sector with maximal Sz

tot is the trivial fully polarized state.
One of the densest packings of independent magnon modes on
the pyrochlore lattice possible is given by densely arranging
magnons localized on hexagonal motifs in the kagome planes,
leading to a magnetization plateau at m/msat = 5/6 (see
Appendix B for details). Each magnon mode reduces the
energy by 4J , so that hsat = 4J [Eq. (B4)]. Each independent
magnon excitation requires three unit cells (12 sites), which
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FIG. 2. On-site magnetization for the m/mS = 1
2 plateau of the

108-site and 128-site clusters. We show only the cubic unit cell
cut of the clusters for better comparison. Green balls correspond to
polarized spins in one direction; red balls represent a polarization
in the opposite direction. The size of the balls is proportional to the
on-site magnetization. Gray shaded triangles are a guide to the eye to
indicate the polarized kagome planes.

fixes the densest packing. Due to the requirement of commen-
surability of the densest packing with the cluster geometry,
we find the 5

6 plateau only for the 108-site cluster in Fig. 1.
On other clusters we can obtain even larger jumps at h = 4J ,
as modes localized on shorter loops winding across periodic
boundary conditions can yield a denser magnon mode filling
as a finite-size effect. This yields, for the 32- and 48-site
clusters, a broad plateau at m/msat = 3/4 which is not rep-
resentative of the infinite lattice. The narrowness of the 5

6
plateau on the 108-site cluster in turn calls into question its
stability in the thermodynamic limit.

We attempt to extrapolate the widths of the magnetization
plateau observed in finite size clusters (Fig. 1) to the thermo-
dynamic limit (Fig. 3), using linear fits in 1/N . There is little
indication that the 3

4 and 5
8 plateaus retain a finite width. In

contrast, we have strong evidence for a finite width of the
1
2 plateau in the thermodynamic limit (red in Fig. 3), which

is located in the field range h1/2
− � h � h1/2

+ , with jumps at
h1/2

− = 2.16(5)J and h1/2
+ = 2.48(1)J . The size of the zero

TABLE I. Cluster vectors �c1, �c2, and �c3 for the eight clusters used
in this work. The last column shows the length of the shortest loop
winding across the periodic boundary and thus competing with the
loops in the bulk (e.g., hexagons of length 6). The clusters of size 32
and 108 respect all lattice symmetries.

Cluster �c1 �c2 �c3 Length

32 2�a1 2�a2 2�a3 4

48a ( 3
2 , 1

2 , 0)T (0, 1, 1)T (0, 1, −1)T 4

48b ( 3
2 , 1

2 , 0)T (0, 1
2 , 3

2 )T (0, 1, −1)T 4

48c ( 3
2 , 1, 1

2 )T (0, 1, −1)T (1, −1, 0)T 4

48d (1, 1, 1)T (1, 0, −1)T (1, −1, 0)T 4

64 (1, 1, 1)T (1, 1, −1)T (−1, 1, 1)T 6

108 3�a1 3�a2 3�a3 6

128 (2, 0, 0)T (0, 2, 0)T (0, 0, 2)T 8

FIG. 3. Extrapolation to the thermodynamic limit of magneti-
zation jumps for the plateaus m/msat = 1/2 (red), 5/8 (blue), and
3/4 (black) based on simple linear fits in 1/N . The lower (h−) and
higher (h+) points of each plateau define the jump towards lower
and higher magnetization plateaus for different cluster sizes, respec-
tively. We obtained the following values in the thermodynamic limit:
h1/2

+ = 2.48(1)J , h1/2
− = 2.16(5)J . To gain further data points for the

finite-size scaling we included a cluster given by four unit cells (16
sites) with periodic boundary conditions.

plateau (determined by the triplet gap) varies nonmonotoni-
cally with cluster size and geometry and is inaccessible for our
largest clusters, rendering a smooth extrapolation impossible.
Nevertheless, our result for the triplet gap in the 64-site clus-
ter, 0.42(11), agrees with that of the recent variational Monte
Carlo estimate, 0.40(4), in the thermodynamic limit [21], and
the data shown in Fig. 3 are consistent with a finite triplet gap.

It is worth commenting on the actual values of the mag-
netic field to make the comparison with experiments easier.
Since a material which realizes the S = 1

2 Heisenberg model
is still lacking, the closest relative we can consider is the
S = 1 compound NaCaNi2F7 [49]. Assuming the same value
of J ∼ 3.2 meV in a S = 1

2 material (and g factor g ∼ 2), the
saturation field would correspond to Bsat ∼ 110 T, and the
1
2 plateau is expected to start at ∼68 T. Such high values of
magnetic fields are accessible in pulsed field experiments.

Properties of the 1
2 plateau. We turn to the correlations of

the 1
2 plateau. We focus on the largest cluster, where finite-size

effects due to short loops winding across periodic boundaries
are suppressed. Nonetheless, we include results for smaller
clusters for finite-size extrapolations, as in the preceding anal-
ysis. Indeed, while the 32-site cluster develops a uniform
magnetization throughout the lattice with 〈ψ0 |Sz

i |ψ0〉 ≡ 0.25,
larger clusters exhibit a more complex pattern, stabilizing
inequivalent spins with differing polarization. These are ar-
ranged with respect to one of the four rotational axes defined
within each tetrahedron. The planes perpendicular to this axis
are alternating triangular and kagome planes, containing 1

4 and
3
4 of the spins, shown in red and green in Fig. 2, respectively:
each tetrahedron contributes a “base triangle” to the kagome
plane and its apex spin to the triangular plane.

The kagome spins (A sites in Table II) acquire polariza-
tion along the field, while the triangular spins (B sites) are
polarized in the opposite direction in our clusters of size
64, 108, and 128. Figure 2 shows the on-site magnetization
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TABLE II. Averaged on-site magnetization 〈Sz
i 〉 and standard

deviation across sites of the two types of sites, A and B, observed in
the finite cluster with size N . We excluded the defects (9 of N = 64,
6 of N = 108, and 0 of N = 128) in the form of the lines with small
on-site magnetization to determine the averaged values.

N A B

64 0.379 ± 0.077 −0.161 ± 0.000
108 0.419 ± 0.036 −0.245 ± 0.044
128 0.426 ± 0.015 −0.278 ± 0.007

pattern 〈ψ0 |Sz
i |ψ0〉 in a cubic unit cell for clusters of sizes

108 and 128, along with a list for different clusters in Table II.
While the largest cluster with 128 sites develops this pattern
perfectly, smaller clusters can exhibit defects in the form
of lines with small on-site magnetization passing through
kagome planes, which we attribute to the existence of short
resonant loops across the periodic boundaries in these clusters.
The number of such defective sites is listed in the caption of
Table II and vanishes for the 128-site cluster.

We emphasize that this symmetry breaking is distinct from
the one we found for the zero-field problem, where the lattice
inversion symmetry appears to be broken, as the two sublat-
tices of tetrahedrons have different energy densities [19]. On
the 1

2 magnetization plateau, the inversion symmetry is pre-
served, while the rotational symmetry of the lattice is broken
by the emergence of a preferred [111] axis. The rotational
symmetry around this axis is not broken, but those within the
three other kagome planes are.

The symmetry breaking is naturally reflected in the spin
structure factor

S( �Q) = 4

3N

∑

i j

〈�Si · �S j〉c cos[ �Q · ( �Ri − �Rj )], (3)

where �Ri denote the real-space coordinates of sites and the
index c denotes the connected part of the correlation matrix

(the factor 4
3 comes from normalization 1/[S(S + 1)] for spin

S = 1
2 ). This is plotted in Fig. 4 for several clusters. The larger

clusters exhibit clearly discernible bright lines in the structure
factor, discarding the rotational symmetry present for the 32-
site cluster; in contrast to the m/ms = 0 state, the inversion
symmetry remains intact.

Earlier work [43] predicted another possible pattern, the R
state, for the S = 3

2 case. We discuss the competition of the R
state with the best variational wave function in Appendix A
and conclude that the R state has higher energy.

Discussion. The pyrochlore Heisenberg antiferromagnet
in a field, like its zero-field cousin, illustrates the capacity
of frustrated magnets to exhibit a plethora of instabilities,
discarding the rotational symmetry at half magnetization and
forming an incompressible state. It is interesting to embed this
finding in a broader context.

First, the idea that the half-magnetization plateau goes
along with a 3:1 disproportionation of sites seems entirely
natural: indeed, for collinear spins, such a 3:1 ratio is the
only way to obtain half-magnetized tetrahedrons. Note, how-
ever, that such 3:1 tetrahedrons can be tiled in exponentially
numerous ways on the pyrochlore lattice, indeed mapping
onto dimer coverings of the diamond lattice, which have a
finite entropy of S ≈ 0.13kB [62–64]. The selection through
fluctuations of a specific one (or subset) of such tilings with
lowered symmetry is known as order by disorder. In this sense,
our magnetization plateau exhibits a form of quantum order
by disorder, although the assignment of what term of the
Hamiltonian contributes the fluctuations is to some degree
a matter of choice. At any rate, the emergence of ordered
ferrimagnetism in the plateau is a striking instability of a
highly frustrated quantum magnet.

We close by contrasting the 1
2 plateau to the kagome ice

plateau mentioned in the Introduction. In a real pyrochlore
material with spin-orbit coupling, an Ising anisotropy needs
to go along with noncollinear easy axes: the local easy axis
is the [111] direction joining a site with the centers of its

FIG. 4. Spin structure factor S( �Q) for the m/mS = 1
2 plateau of various clusters. The top row shows the Qy = Qx cut through the Brillouin

zone; the bottom row corresponds to the Qz = 0 cut.
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tetrahedrons. This turns a uniform applied magnetic field into
a staggered Zeeman field according to the sublattice [65]; as
mentioned above, when applied along a [111] direction, it
polarizes the triangular planes more strongly than the kagome
ones, as the easy axis projections differ by a factor of 3. We
find it most intriguing that this general setting arises for the
S = 1

2 Heisenberg plateau by spontaneous rather than explicit
symmetry breaking, and the question of interpolating between
the two immediately poses itself. Note that the two cases differ
considerably in (nonsymmetry) “details”: the triangular layers
are strongly positively polarized in kagome ice, in contrast
to their weak negative polarization in the Heisenberg S = 1

2
plateau.

There clearly remains much further scope for studying the
highly frustrated quantum magnets in d = 3 with and without
applied fields, and for the foreseeable future, recent tech-
nological progress promises to yield previously inaccessible
interesting data such as those underpinning the present paper.
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APPENDIX A: FURTHER DETAILS
OF THE DMRG SIMULATION

Matrix-product operators (MPOs) can be constructed by
hand for the simplest one-dimensional models with nearest-
neighbor interactions. However, this task becomes difficult
when long-range interactions are present and needs to be done
in an automatic way. While the corresponding MPO of a sin-
gle product, e.g., Sz

i Sz
j , can be represented by an MPO of small

bond dimension, the bond dimension grows exponentially by
summing up multiple terms. Luckily, the MPO can be com-
pressed effectively using the deparallelization method [66]
without any information loss in many cases. We start by opti-
mizing a random matrix-product state with the corresponding
size of the cluster using DMRG where the long-range correla-
tions are captured automatically up to a given bond dimension.
The choice of the three-dimensional to one-dimensional map-
ping can influence the overall convergence as well as the
final bond dimension of the MPO, which can also have an
impact on the speedup of the calculation. However, we did
not observe a significant difference in terms of computation
time and convergence properties for the different paths in the
three-dimensional clusters we investigated.

The convergence problems in three dimensions are even
more severe than in two dimensions since there are more
periodic bonds yielding to increasing long-range interaction.
While we do not face convergence problems for the 32- and
48-site clusters, the DMRG often exhibits bad convergence
and gets stuck in local minima for the larger clusters due to
its local-update nature. In these cases, the pattern in Fig. 2
is only partially generated if we initialize the algorithm with
random states. This can be monitored by examining either
the truncation error or the two-site variance as a function of

FIG. 5. The energy extrapolations (solid lines) for the 1/2
plateau state of the 64- and 108-site clusters as a function of the
two-site variance. The labels indicate the corresponding U(1) bond
dimensions. The last four points with the smallest variance are in-
cluded in the linear fits.

the bond dimension. Metastable states induce a nonmonotonic
behavior of these quantities; that is, the energy decreases, but
the truncation error or two-site variance increases. When the
convergence is smooth, the energy typically follows a linear
behavior as a function of the two-site variance [61].

To stabilize one of the magnetically ordered states in our
simulation, we therefore use the pinning-field technique [59].
We apply a magnetic field (at low bond dimensions) to the

same set of sites for each tetrahedral unit cell that is compat-
ible with the polarized kagome planes such that the ordered
state is stabilized. We then remove this pinning field and con-
tinue the optimization procedure while further increasing the
bond dimension. With this approach the overall convergence
becomes much better and smoother, as indicated in Fig. 5.

To assess the quality of the variational ground state, we
compare the total energies at a fixed bond dimension χ =
8000 for the 64- and 108-site clusters using different initial
conditions: starting from random initial states or using the
pinning-field technique to start from ordered patterns. The
ordered pattern produces lower energies (∼0.1J) than starting
from random initial states. We also consider another possible
pattern, the R state [43], which was predicted for the S = 3

2
case. This state also yields higher energies than our best vari-
ational state, although only with a small difference ∼0.05J ,
and is therefore clearly in the low-energy manifold. The error
of the extrapolated energies is defined as one quarter of the
distance between the lowest-energy DMRG data point and the
extrapolated value, which is commonly used in the commu-
nity [67]. The same definition of the error bars is used in the
main text as well and should be understood as an estimate of
the systemic extrapolation error.

APPENDIX B: LOCALIZED MAGNONS
IN HIGH FIELDS

Constructing analytic solutions for quantum many-body
systems is a challenging discipline and succeeds only in spe-
cial cases. Therefore, solutions of the ground state in the
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form of quasiparticles in high fields were a huge success for
spin systems in certain frustrated lattices [23–29]. Probably
the most famous example of these quasiparticles is indepen-
dent and localized magnon excitations in the two-dimensional
kagome lattice.

Kagome lattice. Localized magnon excitations describe the
ground state of the Heisenberg model in a large external field
on the kagome lattice. These are confined to nontouching
hexagons such that the description can be limited to a single
star of David. Starting from the fully polarized state |↑ · · · ↑〉,
a single magnon state is given by (up to normalization)

|m〉 ∝
∑

j∈�
(−1) jS−

j |↑ · · · ↑〉, (B1)

where j runs over the hexagon. The localization can be eas-
ily verified since each corner spin of the star is attached to
two spins of the inner hexagon. The contributions of flipped
spins propagating to corner sites are canceled due the alter-
nating signs. Hence, the magnetic excitation remains within
the hexagon and preserves the alternating sign structure such
that the hopping contribution is diagonal. Not only are the
magnons localized, but they are also ground states of the
Heisenberg antiferromagnet for high fields. For simplification
we set h = 0 and focus on the hopping H± and interaction
term Hz individually:

H = JH± + JHz

= J

2

∑

〈i, j〉
[σ+

i σ−
j + σ−

i σ+
j ] + J

4

∑

〈i, j〉
σ z

i σ z
j . (B2)

Within the hexagon, the sign of each term in Eq. (B1) is
inverted by H±. Hence, H±|m〉 = −J|m〉, and the hopping
term reduces the energy by J . In the kagome lattice, each site
is attached to four other sites. The contribution to the energy
by the interaction Hz due to a single spin flip is a reduction
of 2J , in contrast to the fully polarized state. In total, a single
magnon reduces the energy by 3J .

Due to the localization, multiple independent states can be
placed within the kagome lattice as long as they are separated
by at least one site. In this manner, each hexagon is uniquely
assigned to nine sites in the kagome lattice to achieve the
densest filling. The complete tiling of hexagons describes the
ground state and corresponds to a magnetization of m/msat =
7/9. The energy per site is reduced to E7/9 = 1/6J from the
fully polarized state E1 = 1/2J .

Pyrochlore lattice. The tetrahedral unit cell of the py-
rochlore lattice consist of four sites. Each face of this
tetrahedron defines one out of four orientations of parallel

FIG. 6. Complete hexagon tiling in a single kagome plane (black
sites) of the pyrochlore lattice. Red and blue sites correspond to the
upper and lower separating layers, respectively. Possible localized
magnon states on the corresponding hexagons are illustrated with
red circles. All sites are uniquely assigned to one localized hexagon
within the red triangles.

kagome planes in the lattice. The apex spins form a separating
triangular plane between the kagome planes. Equivalent to
the two-dimensional case, the same formalism can be used
to generate localized magnons in the pyrochlore lattice. As
visualized in Fig. 6 by the red dotted triangles, nine sites are
uniquely assigned to each localized hexagon in the kagome
plane (black sites), such that no supercells are sharing the
same site. The corresponding magnon excitation is illustrated
by the red circles. Red and blue sites correspond to the
upper and lower separating triangular layers, respectively.
In addition to the nine sites lying inside the plane, we in-
clude the three (red) sites from the upper layer to realize a
complete tiling of the pyrochlore lattice. As in the purely
two-dimensional case, a localized magnon is confined to three
unit cells. Hence, each magnon is assigned to 12 sites, and the
corresponding plateau is m/msat = 5/6.

We can determine the saturation field analytically by com-
paring the energy per site of the fully polarized state, E1 =
3
4 J − h

2 , with the energy of the magnon crystal, E5/6 = 5
12 J −

5
6

h
2 . The first part is derived from the Heisenberg Hamiltonian

in Eq. (B1), and the second part is the energy shift induced by
the external field,

E1(hsat ) = E5/6(hsat ), (B3)

3

4
J − hsat

2
= 5

12
J − 5

6

hsat

2
⇒ hsat = 4J (B4)
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