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Magnon spectrum of the amorphous ferromagnet Co4P from atomistic spin dynamics
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The gapped local minimum in the magnon dispersion, located at a finite wave number and frequency, has
been observed in the amorphous ferromagnet Co4P. The feature is called a “rotonlike” excitation and has eluded
explanation for decades. We overcome the limitations of previous theories by combining the reverse Monte Carlo
method, to determine the atomic structure, with large-scale atomistic spin simulations. This method enables us to
include atomic order and spin correlations on an equal footing. We find the rotonlike feature is actually gapless,
in contrast to the gapped structure found in previous studies. The gapless feature is attributed to amorphous
umklapp scattering caused by residual structural order.
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Introduction. Amorphous magnets are technologically
important due to their highly tunable coercivity and magne-
tization for, e.g., power transformers and magnetic memo-
ries. Commonly used materials include random rare-earth–
transition metal alloys such as GdFeCo for magneto-optical
devices [1] and CoFe alloys for spintronic devices [2,3]. The
phenomenology of these materials is often not much differ-
ent from ordered materials, displaying conventional ferro- or
ferrimagnetic order. On the other hand, in thermally induced
switching [4] or long-range magnon transport [5,6] the local
atomic arrangement appears to be important. Magnonic heat
and spin transport in amorphous systems is currently a topic
of debate since experimental results contradict each other
[7,8]. With the current interest in heat and spin currents in
amorphous magnets, we reinvestigate the magnon dispersion.

We select Co4P, a typical amorphous ferromagnet, in this
Letter as a relatively simple representative for amorphous
magnets [9]. In the 1970s, Co4P attracted much interest
[9–11], because neutron scattering experiments discovered
a local minimum in its magnon dispersion at a finite wave
number [12]. The feature is reminiscent of the dip in the
phonon dispersion of liquid He caused by the “roton” exci-
tation that limits superfluidity [13,14]. While the similarity of
the dispersion relations intrigued researchers, the physical ori-
gin remained a mystery. Truly “rotonlike” excitations in other
magnetic systems, such as triangular lattice antiferromagnets
[15–19], are not applicable for ferromagnets. In concordance
with the previous studies, we nevertheless refer to the dip
feature as a rotonlike excitation even though we arrive at a
very different explanation.

*Corresponding author: j.barker@leeds.ac.uk

We may analyze the magnon dispersion in the quasicrys-
talline approximation (QCA) [11,20] of the amorphous atomic
structure, in terms of an isotropic atomic pair-correlation func-
tion g(r), with r being the atomic distance. The energy ε of a
spin wave with wave number Q then reads

εQCA(Q) = 4πμρm

∫
J (ri j )g(ri j )

(
1 − sin Qri j

Qri j

)
r2

i jdri j,

(1)
where μ is a local moment, ρm is the mean density of the
magnetic atoms, and J (ri j ) is the exchange interaction de-
pendent on distance ri j = |r j − ri|, where ri (r j) denotes
the position of the ith ( jth) magnetic atom. With physically
motivated models for J (ri j ) and g(ri j ), the QCA predicts
spectra including a shallow dip close to the wave number at
which the rotonlike feature was observed. Calculations in the
effective medium approximation (EMA) that includes spatial
correlations to a higher order than the QCA find a deeper
valley [21–23]. However, the EMA also proceeds from an
isotropic atomic correlation function and the predicted gap is
still larger than observed. Shallow dips [24] were also found
in numerical simulations based on linear spin wave theory,
which approximates spin correlations, for anisotropic atomic
correlation functions of hard sphere packing models [25–28].
In essence, all previous approaches have either significantly
approximated spatial or spin correlations (or both). On the
other hand, Shirane et al. pointed out the difficulties of mea-
suring small gaps by inelastic neutron scattering due to its
finite resolution [29]. They already suggested that the roton-
like dip might be gapless and possibly caused by umklapp
scattering.

In this Letter, we report results of extensive atomistic simu-
lations in which both atomic and spin correlations are treated
on an equal footing. This enables us to clarify whether the
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gap is real and the nature of the local dip. This paves the way
to study the magnonic transport in amorphous magnets and
related spintronic applications [5–8].

Our simulations expose a magnon dispersion that is an
intriguing mix of features from the QCA and residual order
in an amorphous structure. We find a gapless mirror image of
the magnons at Q = 0 with parabolic dispersion, centered at
the wave number at which the static structure factors peak [29]
and interpret it as residual umklapp scattering.

Methods. The atomic positions in amorphous alloys are
not precisely known, but they are not distributed completely
randomly either. Our task is to find statistical ensembles that
on average describe the specific material properties. The ob-
served rotonlike gap depends sensitively on, for example, the
alloy composition [12,30], so it may have a structural origin.
Here, we generate the amorphous atomic positions by the
reverse Monte Carlo (RMC) method [31] under constraints
of established observations, which should produce a more
realistic model than building an alloy by random packing
[25–28].

We use the RMC++ code [32], to generate atomic config-
urations that reproduce x-ray, neutron, and polarized neutron
diffraction data for Co4P [33]. We start with an fcc lat-
tice with substitutional disorder in the form of randomly
distributed Co and P in a 4:1 ratio. In each iteration step,
(a) two atoms can be swapped or (b) a single atom can
be moved a small distance in a random direction [32]. Pe-
riodic boundary conditions keep the volume constant. The
mean-square cost function for a scattering function (i = x-
ray, neutron, polarized neutron) reads χ2

i = ∑nQ

Q [Scalc
i (Q) −

Sexpt
i (Q)]2/(nQσ 2

i ), where nQ is number of data points [34], σi

is a weight that reflects the confidence level of a data set, and
Scalc

i (Q) and Sexpt
i (Q) are the calculated and measured scat-

tering functions for Q. We note that the scattering functions
are represented as Scalc

i (Q) ∝ ∑
mn ρn

∫
4πr2

i jdri j{gmn(ri j ) −
1} sin(Qri j )/(Qri j ) [35], where ρn is the number density of
atom type n, gmn(ri j ) = nmn(ri j )/(4πr2

i j�ri jρn), nmn is the
number of neighbors of atom type n at distance from ri j to
ri j + �ri j from an atom of type m, and �ri j is a binning width
of the histogram. Each move that lowers the total cost func-
tion χ2 = ∑

i χ
2
i is accepted unconditionally while those that

increase χ2 are accepted with a probability exp(χ2
old − χ2

new),
where χ2

old and χ2
new are the cost function values before and

after the move.
We model the atoms by hard spheres with radii rCo =

1.25 Å and rP = 1.00 Å, ignoring the chemical bonding.
We implement the known feature of amorphous compounds
such as Co4P that the anions (P in this case) almost never
touch [33] by an increased cost when P atoms are closer
than 2.75 Å. The stopping criteria of the RMC procedure is
|χ2

old − χ2
new|/χ2

new < 0.8%, while the weighted R factors Rw,i

[35] or quality of the fits are 25.3%, 28.47%, and 20.5% for
i = x-ray, neutron, and polarized neutron. σi are respectively
σx-ray = 0.005, σneutron = 0.01, and σpolarized = 0.01. Further
technical details and data files are available in the Supplemen-
tal Material [36].

After the Monte Carlo iterations converged, as shown in
Fig. 1(a), we compute the magnetic properties by atomistic
spin dynamics (ASD) [37–39]. The ith Co atom at ri has a

FIG. 1. (a) Correlation functions g(ri j ) for Co-Co, Co-P, and P-P
pairs in Co4P, obtained as an average over ten independent configu-
rations generated by RMC. The vertical lines illustrate the δ-function
correlations in an fcc crystal with the same volume. The inset shows
an example of an RMC generated amorphous Co4P with 62 500
atoms (blue = Co and red = P). (b) Single-exponential exchange
interaction J (ri j ) used in the atomistic spin simulations, which we
set to zero for ri j > rcutoff = 5.45 Å.

local moment μ = μB (Bohr magneton) [12] and direction
S(ri ) with |S| = 1. The nonmagnetic P atoms are treated
as vacancies [40]. Assuming that anisotropies and superex-
change interactions average out in random alloys, we adopt
the isotropic Heisenberg model Hamiltonian,

H = − 1
2

∑
i �= j

J (ri j )S(ri ) · S(r j ) − μB ·
∑

i

S(ri ), (2)

where B is an external magnetic field. J (ri j ) extends beyond
nearest neighbors. Our knowledge of the exact functional
form of J (ri j ) has not progressed much in the past decades,
so we implemented several options, such as a step function,
exponential decay, and oscillating [Ruderman-Kittel-Kasuya-
Yosida (RKKY)] functions [11] and with different ranges.
Since the results do not change significantly, we concluded
that precise distance dependence is not an important issue.
In the following, we use the exponential decay shown in
Fig. 1(b),

J (ri j ) = J0 exp
(
− ri j − r0

w

)
for ri j < rcutoff , (3)

where J0 = 6.733 meV, r0 = 2.54 Å, and a decay length
w = 0.66 Å. rcutoff = 5.45 Å is a cutoff radius above which
we set J (ri j ) = 0. Truncating the interaction at large distances
does not affect the results, but reduces the computational cost.
With these values the curvature of the magnon dispersion ε(Q)
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corresponds to the experimental spin wave stiffness of amor-
phous Co4P, D = 1

2 [∂2ε(Q)/∂Q2]Q=0 = 135 meV Å2 [11]. In
order to emphasize the effects of the disorder, we compare
results for amorphous Co4P with those for hypothetical crys-
talline fcc Co with the same volume and parameters.

The Landau-Lifshitz equation for a local moment reads

dS(ri )

dt
= −γ [S(ri ) × H(ri ) + αS(ri ) × {S(ri ) × H(ri )}],

(4)
where t is time, γ = 1.76 × 1011 rad s−1 T−1 is the gyromag-
netic ratio, α = 0.01 is a damping constant, and H(ri ) =
ξ(ri ) − (1/μ)∂H /∂S(ri ) is the effective magnetic field on
the spin at ri. ξ(ri ) is a fluctuating field that provides a tem-
perature to the spin system. We use a quantum thermostat that
obeys the fluctuation-dissipation theorem [41,42],

〈ξa(ri, t )〉= 0, 〈ξa(ri )ξb(r j )〉ω = δi jδab
2α

γμβ

h̄ω

exp (β h̄ω) − 1
,

(5)

where a and b are Cartesian components, ω is the fre-
quency, β = (kBT )−1 is the inverse thermal energy with kB

is the Boltzmann constant and T is temperature, h̄ is Dirac’s
constant, 〈· · · 〉 is a statistical time average, and 〈· · · 〉ω is a sta-
tistical average in frequency space. This thermostat describes
thermodynamic properties well up to the Curie temperature
[43,44]. Details of the numerical implementation of the ASD
method are available in the Supplemental Material [36]. Our
combination of RMC for the atomic structure, the ASD with
the quantum thermostat, and the raw computational power
to handle large systems all drastically improve previous ap-
proaches to simulate random magnets [20–24].

Our algorithm first equilibrates a large number of spins
(62 500) to a constant temperature. We then carry out the ther-
modynamic averaging of the desired properties by collecting
fluctuating spin trajectories around their equilibrium values up
to 0.4 ns. Even though the systems size is already large, we
confirm ergodicity by averaging over ten realizations of the
amorphous arrangement of atoms.

Results. Figure 1(a) shows the calculated pair-correlation
functions g(ri j ) of Co-Co, Co-P, and P-P pairs in amorphous
Co4P and Co-Co pairs in crystalline fcc. gPP is featureless with
a weak maximum at ∼4 Å, so P is nearly homogeneously
distributed and only a few P atoms touch each other, as in-
tended by the extra cost for their proximity. The observed
double-peaked behavior in gCoCo around 4.4 and 5.0 Å in-
dicates short-range order, a common feature of amorphous
metalloids [11]. The average number of nearest neighbors,
counted as atoms within a radius rnbr, is 7.53 for Co-Co
(rnbr = 3.1 Å), 1.96 for Co-P (rnbr = 3.0 Å), and 0.30 for P-P
(rnbr = 2.75 Å), where rnbr has been chosen based on the first
peak of the g(ri j ) for each pair. We show an example of an
RMC generated atomic configuration in the inset to Fig. 1(a).

The excellent agreement of the scattering functions gener-
ated by the optimized structures and those inferred from the
experiment [33], shown in Figs. 2(a)–2(c), demonstrates the
validity of the RMC procedure [36].

Figure 3(a) shows the temperature dependence of the
dimensionless magnetization M(T ) = 〈(1/N )

∑N
i=1 S(ri )〉T ,

where N is the total number of magnetic atoms, for the

FIG. 2. (a) X-ray, (b) neutron, and (c) polarized neutron scat-
tering functions of Co4P. The solid lines are an average of ten
independent configurations generated by our RMC method [36]. The
dashed lines are the experimental results [33].

crystalline and amorphous systems and experimental data for
amorphous Co4P [45]. The crystalline system has a larger
lattice constant than the physical fcc Co, which is a good
metal with s-d hybridized bands and high Curie temperature
TC. The susceptibilities (not shown) of both the hypothetical
fcc Co and Co4P peak at TC ∼ 500 K. The experimental TC

of Co4P, 620–720 K [12,46], is higher than calculated but
we reproduce the experimental spin wave stiffness and low-
temperature behavior well. At low temperatures (T � TC) the
magnetizations of both crystalline and amorphous systems de-
crease according to Bloch’s law M(T ) = 1 − B3/2(T/TC)3/2,
with B3/2 being the coefficient, as shown in Fig. 3(b). We
find B3/2 = 0.16 for the fcc Co, which is very close to the

FIG. 3. (a) Temperature dependence of the magnetization
M(T/TC) of amorphous Co4P (circle) and hypothetical crystalline
fcc Co (diamond). Curie temperatures are TC ∼ 500 K for both
systems. Green triangles are experimental results [45]. (b) Nor-
malized temperature (T/TC)3/2 vs reduced magnetisation �M =
M(T/TC) − 1. Solid and dashed lines are low-temperature fits to
Bloch’s law �M = −B3/2(T/TC)3/2.
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experimental value of B3/2 = 0.17 for fcc lattices [11]. The
larger B3/2 = 0.22 for amorphous Co4P reflects a reduced spin
wave stiffness [11]. However, it is about half the reported
B3/2 ∼ 0.45 inferred from magnetometry measurements [46].
These discrepancies of TC and B3/2 might be due to non-
collinearities in the magnetic ground state caused by the
superexchange via P or local anisotropies [47]. Moreover, the
value of B3/2 inferred from experimental neutron scattering
measurements of the stiffness has generally been smaller than
that from magnetometry for a variety of amorphous ferromag-
nets [47–49]. It is a large parameter space to explore and we
do not pursue the issue in more detail here.

Next, we address the unusual rotonlike dip observed in the
inelastic neutron scattering spectra of Co4P. To this end, we
compute the inelastic neutron scattering cross section for a
single magnetic species [50,51],

S (Q, ω)

= g2
nr2

c

2π h̄
f 2(Q)

∑
ab

(
δab − Q̂aQ̂b

) ∑
i, j

e−iQ·ri j

×
∫ ∞

−∞
e−iωt [〈Sa(ri, 0)Sb(r j, t )〉 − 〈Sa(ri )〉〈Sb(r j )〉]dt,

(6)

where gn = 1.931 is the neutron g factor, rc = e2/mec2 =
2.8 fm is the classical electron radius with e, me, and c the
elementary charge, the electron mass, and the speed of light,
respectively, f (Q) is the atomic form factor of Co [52], Q
is the scattering vector, and Q̂ = Q/|Q|. We compute the
correlation function from the spatiotemporal dynamics of our
large spin cluster to all orders of the magnon-magnon interac-
tions, without approximations [53]. We defer the details of the
numerical procedure to the Supplemental Material [36].

In Figs. 4(a) and 4(b), we show the calculated spectra
for the crystalline model and amorphous Co4P at room tem-
perature T = 300 K for Q ‖ [001]. The excitations of the
crystalline system are a periodic function of momentum trans-
fer in the extended Brillouin zone scheme, with an amplitude
that decays only weakly by the Co form factor. We observe
a single magnon band, as expected for one spin per primitive
unit cell.

We extract the spin wave stiffness D from our spectra
by a fit to ε(Q) = DQ2, for Q < 0.6 Å−1. In the fcc model
[Fig. 4(a)] the stiffness is DCo = 182 meV Å2, whereas in the
amorphous Co4P model [Fig. 4(b)] the spin waves are softer
with DCo4P = 129 meV Å2, very close to the experimental re-
sults [11]. In crystalline magnets the magnon linewidth scales
as ∼αω, while the peaks are much broader in the amorphous
material, as expected in disordered systems. At high energies,
ε > 50 meV, the spectrum becomes diffuse, i.e., well-defined
magnon excitations cease to exist. In Fig. 4(b), we compare
the numerical results with Eq. (1) in the QCA, which agrees
quite well close to the origin and appears to model the modu-
lation of the diffuse background at high energies.

At larger scattering vectors the amorphous magnetic spec-
trum shows a clear feature with parabolic dispersion and zero
gap, centered at Q ≈ 3.1 Å−1, close to the observation [see
Fig. 4(b)] and the first peak in the static structure factors (see
Fig. 2). The calculated linewidth is close to that at the origin,

FIG. 4. (a), (b) Calculated inelastic neutron scattering cross sec-
tion Eq. (6) of (hypothetical) crystalline fcc Co (a) and Co4P and
the QCA analytic prediction (red solid line) (b) at temperature T =
300 K. In (b), the magnon (dashed orange line) and rotonike excita-
tions (orange dots) [12] observed at room temperature are overlaid
for comparison.

indicating a coherent rather than diffuse magnon. The second
minimum agrees with the reciprocal lattice vector of the fcc
lattice with the same momentum density, which is the starting
configuration of the Monte Carlo procedure. We observe anal-
ogous minima at the Brillouin zone boundary in other crystal
directions as well such as Q ‖ [111] (not shown). However, in
contrast to the crystalline system of the artificial fcc Co where
the spectrum repeats due to Bloch’s theorem, these dips do
not reappear in the amorphous spectrum at higher values of
Q. These minima are therefore caused by umklapp scattering
from residual structural order, as suggested previously [29].
But we cannot confirm that these lead to a finite gap that is
crucial for an exotic roton feature.

Conclusion. Our calculations of the spin wave spectrum
of amorphous Co4P find a replica of the dispersion around
the � point, looks surprisingly similar to that of crystalline
ferromagnets at low energies. This feature is similar to the
so-called rotonlike local minimum but turns out to be gapless.
We attribute it to umklapp scattering caused by residual lo-
cal order and not by a complex magnetic texture such as a
roton. The wave numbers correspond to the first peak posi-
tions of observed structure factors. The sharp low-frequency
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feature implies a contribution that is coherently periodic over
many lattice constants in the magnon wave functions. In
other words, the resulting amorphous structure retains some
ordering. We note that in the original neutron scattering ex-
periments [12], there is a comment that the peaks in the
static structure factors were sharper than usually seen in amor-
phous materials, suggesting that these samples also retained
enhanced structural order. At high energies, the spectrum
features no coherent magnons but a significant diffuse back-
ground that is caused by the alloy disorder [54,55]. We note
that the residual order which causes the umklapp scattering
could be a more general phenomenon, even in glassy materi-
als, which have similar static structure factors. We hope that
our work will inspire renewed experimental efforts to measure
magnons in amorphous materials that can test our predictions.
If the gap is absent, we have a powerful method at hand to
characterize the degree of disorder in nonideal amorphous

magnets. Our spin correlation functions are also an input for
calculating spin transport properties in amorphous magnets
via the Kubo formula [56].
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