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Dephasing-enhanced Majorana zero modes in two-dimensional and
three-dimensional higher-order topological superconductors
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The one-dimensional (1D) Kitaev model in the topological phase, with open boundary conditions, hosts
Majorana zero modes. These are fermion parity-odd operators that almost commute with the Hamiltonian and
manifest in long coherence times for edge degrees of freedom. We obtain higher-dimensional counterparts of
such Majorana operators by explicitly computing their closed form expressions in models describing 2D and
3D higher-order superconductors. Due to the existence of such Majorana zero modes, the coherence time of
the infinite temperature autocorrelation function of the corner Majorana operators in these models diverges with
the linear system size. In the presence of a certain class of orbital-selective dissipative dynamics, the coherence
times of half of the corner Majorana operators are enhanced, while the time correlations corresponding to the
remaining corner Majoranas decay much faster as compared with the unitary case. We numerically demonstrate
robustness of the coherence times to the presence of disorder.
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Introduction. With the imminent advent of quantum tech-
nologies [1-3] it is desirable to localize quantum information
[4,5] in a manner that is stable to both environmental
disruptions and thermal fluctuations. The fact that density
matrices of local subsystems generically evolve into feature-
less mixed density matrices under nonintegrable quantum
dynamics [6-8] poses an impediment to achieving this goal.
Yet, there are various classes of quantum systems that evade
this fate. For instance, by the phenomenon of many-body
localization [9-19], wherein local quantum information is
protected due to the existence of disorder-induced emergent
local integrals of motion. While many-body localized systems
contain a macroscopic number of local operators that com-
mute with the Hamiltonian, an alternative class of models
is represented by disorder-free systems that contain an O(1)
number of almost conserved operators referred to as strong
edge zero modes [20-30]. These modes are localized at the
boundaries of the system and commute with the Hamiltonian
up to corrections that are exponentially suppressed in linear
system size. The paradigmatic one-dimensional (1D) trans-
verse field Ising model [31,32] in the ferromagnetic phase
supports two strong zero modes [20,23,26]. The model has
a global Z; spin-flip symmetry that allows one to partition the
Hamiltonian spectrum into two different symmetry sectors.
The strong zero modes anticommute with the generator of the
spin-flip symmetry and almost commute with the Hamilto-
nian. As a consequence of these properties, the entire many
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body spectrum of the model is twofold degenerate (up to
exponentially small corrections).

A closely related notion to strong zero modes is that of
localized zero modes or zero-energy eigenstates of the Hamil-
tonian. Models with zero modes are promising candidates
for hosting strong zero modes as well. More precisely, zero
energy eigenstates of the single particle Hamiltonian ensure a
pairing of eigenstates of the entire many-body spectrum. Zero
modes appear on the edges of 1D topological phases of matter.
In particular, the zero modes in the Ising model are related to
the Majorana zero modes of the Kitaev model in the topo-
logical phase [33] via a Jordan-Wigner transformation. Thus
the phenomena of zero modes in the Kitaev model translates
to the existence of strong zero modes and therefore transcends
the low-energy topological physics by having implications for
the entire spectrum in the topological superconducting phase.
In the context of the Kitaev model, the (strong) Majorana
zero modes manifest in exponentially long (in system size)
coherence times for the edge Majorana operators [20].

Higher-order topological phases [34—52] are a subclass of
topological phases of matter. The bulk-boundary correspon-
dence of topological phases manifests as gapless boundary
signatures on higher-codimension corners in the case of
higher-order topological phases. Within the nomenclature
of higher-order phases of matter, an nth order phase sup-
ports topologically protected gapless modes on codimension
n corners. In particular, second-order and third-order su-
perconductors in 2D and 3D, respectively, host Majorana
corner zero modes [52,53]. In the nontrivial topological phase,
these models cannot be adiabatically deformed to a trivially
gapped superconductor, whose many-body ground state has a
fully gapped surface/edge without any corner Majorana zero
modes. Therefore, these higher-order superconductors may be
viewed as higher-dimensional generalizations of the Kitaev
chain.
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FIG. 1. Illustration of the 2D (a) and 3D (b) higher-order super-
conductors that host corner Majorana modes. The 2D [Eq. (1)] (3D
[Eq. (19)]) model is defined on a square (cubic) lattice with four
(eight) Majorana degrees of freedom yja (blue dots), a € {1, 2, 3, 4}
(@aefl,2,...,8}), per unit cell j = (j, j,) [i = U jy, j2)], and
contains inter-J and intra-h unit cell coupling terms depicted in red
and black arrows, respectively. Each term corresponds to an arrow
oriented according to the convention that the Majorana operator at
the source of the arrow multiplies the operator at the target from the
left.

In this work, we establish that the corner Majorana zero
modes in the 2D and 3D higher-order phase transcend the
low-energy topological features. We do so by showing that
the corner Majorana modes are the leading order contribu-
tions to Majorana zero modes for which we derive analytic
expressions. Similar to the case of the 1D Kitaev chain, the
existence of Majorana zero modes in the higher-order su-
perconductors facilitates an enhanced stability of quantum
information stored in the corner Majorana operators, reflected
in exponentially long coherence times for these operators. We
numerically investigate the stability of the coherence times
of the corner Majorana operators associated to the Majorana
zero modes to Markovian dissipative dynamics [54,55] and
disorder [23,56]. We identify a class of orbital-selective de-
phasing dynamics under which the stability of half of the
Majorana corner zero modes, as witnessed in long coherence
times, is enhanced while the remaining ones get destroyed.
Furthermore, we numerically demonstrate that the Majorana
zero modes remain stable to flux disorder and random hopping
amplitudes.

2D model. The model [34,53] we consider is defined on a
2D square lattice A of dimension L x L with open boundary
conditions. Each unit cell is endowed with a four-dimensional
local Hilbert space that admits the action of four Majorana op-
erators denoted as 2, where a € {1, 2, 3,4} and j = (j,, Jy)
(x=1,...,L; jy=1,..., L) labels the unit cell on the lat-
tice, such that {yja, ylf’} = 284 bdjx; cf. Fig. 1(a). Equivalently,
each unit cell has two complex fermionic orbital degrees
of freedom defined as ¢j; = (yj1 + iyj4)/2 and dj = (yj2 +

iyj3 )/2. In terms of the Majorana operators, the Hamiltonian
takes the form H = Hy + H1, where Hy and H; describe the
inter- and intraunit cell coupling, respectively, with

Ho

. 2.1 4 3 2.4 1.,3
— i) [+ 1 e — v v
j

Hi= —ih Y [y + 3y + vy + €]
J

The hopping amplitudes are staggered such that the model is
in a higher-order topological phase for [J| > |h| and in a triv-
ial phase for |J| < |h|. A topological phase transition between
these two distinct phases occurs at the critical point [J| = |h].
In the fixed-point topological limit h = 0, the model has four
exact corner zero modes I' = {ylly L yLZ’ L yﬁ 1 Vf,l} which
commute with the Hamiltonian (1) and anticommute with the
total fermion parity operator (—1)* = [T;(=¥' ¥ ¥}

Strong zero modes. In the higher-order topological phase
for h # 0, four strong zero modes ® = {¢\ 1, ¢r.L, d1.1, Pr.1}
descending from the four exact zero modes of the fixed-point
Hamiltonian, can be explicitly constructed. The strong zero
modes ¢ have the following properties [20-23,26,27]: (1)
commute with the Hamiltonian up to terms that are exponen-
tially suppressed in the linear system size L

[H, ¢] = O(e™"), @

where A = In(J/h); equivalently, the strong zero modes com-
mute exactly with the thermodynamic (L — o0) many-body
quantum Hamiltonian; (ii) anticommute with the fermion
parity operator, i.e., {(—1)F, ¢} = 0; (iii) are normalizable,
¢? =1.

Since the models we consider are noninteracting, the single
particle zero-energy eigenstates are in one-to-one correspon-
dence with strong zero mode operators. In what follows, we
refer to these as Majorana zero modes to emphasize that
these are second-quantized operators and not single particle
eigenstates. The Majorana zero modes take the form

2L-2

p=N> ¢, 3)

n=0

where ¢™ appears at order (h/J)" in the sum and A is a
normalization constant. The nth-order term is constructed to
ensure commutativity with the Hamiltonian up to corrections
of order O(h"*!/J"). The zeroth order terms ¢® coincide
with the exact zero modes y € I' of the fixed-point Hamil-
tonian #H,. By definition, these commute with #,; however,
their commutator with #; is nonvanishing and appears at
order O(h/J). The first order correction is constructed to
precisely remedy the lack of commutation of the zeroth order
term with H; by solving

[Ho, pV1 = —[H,1, 1. )

Proceeding iteratively [20,21,23], the nth-order correction to
the exact zero modes satisfies the recursion relation

[Ho, 9™ = — [H1, 9™,
[H1, 9™ =0[(h"*! /dM)]. o)

We illustrate the derivation of the Majorana zero modes for the
case of ¢; ;. Here the zeroth-order contribution corresponds
to the exact zero mode y;',. At the nth step in the iterative
procedure, the Majorana zero mode ¢§n1) is a linear combi-
nation of the Majorana operators yi _j, localized on the line
Jy=—jx+n+2. ¢i"1) has a nonvanishing commutator with
H; that is linear in the yji’ i and yj‘i’ j, Majorana operators on
the same line. This lack of commutation is compensated by
the commutator of ¢>§nl+ D with H, (see Fig. 2). The Majorana
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FIG. 2. Schematic showing the relevant operators in the deriva-
tion of ¢, ;. The red dots in the lower left corner represent the
operator ¢>§n1) appearing at the nth order in the perturbative expan-
sion of ¢; ;. The commutator [#,, ‘7’5?1)] forn=0,1,2 is a linear
combination of the Majorana operators represented by the green dots

on the diagonal of each square.

zero modes, located at the four corners of the lattice, have the
following explicit form:

h
J
jel—:\lrlz
2L-2 h n
_ 4
¢ =N (j) Z Vi
n=0 jely o
2L-2 h n
pro=NY_ (3> > (=i,
n=0 jelth
2L-2 h n
— 2
be=N) (3) > (©)
n=0 jeLly!,

where L‘;’}’S"' denotes the collection of points (jy, j,) on the
line syjx +s,j, =N. For a L x L system, the commuta-
tor of the Majorana zero mode ¢; with the Hamiltonian
contains Majorana operators localized at the boundary dia-
metrically opposite the corner j and appearing at order L, L +
1,...,2L — 1 in the expansion parameter h/J.

To illustrate these abstract notions, we present a simple
explicative example. For a 2D lattice of dimension 3 x 3, the
Majorana zero mode located at corner (1,1) takes the form

h h\?2
1.1 =N|:7/13,1 + j(V21 - V13,2) + <J> (7/33,1 - J/z‘%,z + V13,3)

h\? s 3 h\* ;
+ (j) (123 —vi2) + (J) Vs,g], (7)

where the coordinates (jy, j,) of the yi’ j, Majoranas are
obtained straightforwardly from j, = —j, + N+ 2, with n =
0,1,2,3,4. The error to the commutator of ¢;; with the
Hamiltonian is

h)?® h\?
(M. 1] = —ZiJN[(j) (=i )+ <j>

N
X (i34 vsa) + (j) (33— V34t3)1|’ @®)

with terms linear in y} ; and y;! ; atorder 3,4, 5 in the ratio
h/J.

Having established the first defining property, we turn to
the two remaining conditions. Since the Majorana zero modes
are linear in Majorana operators, this guarantees that they an-
ticommute with the fermion parity operator (—1). All terms
in ¢ anticommute among themselves. We use this feature to
compute the square of ¢; ; and set the normalization constant
N in Eq. (3) accordingly,

2L-2 h 2n
: 2 2 : 1,1
Jim ¢, = N1 lim EO: (3) [
n=

JE N2
“@E et ©)

where |Lr11;12| is the cardinality of the set of points Lrlmiz with

limy _, |Lr1];12| =n+ 1, and 1 is the identity operator. The
geometric series of Eq. (9) is convergent for h < J confirming
that the Majorana zero modes (6) are well defined in the
higher-order topological phase while having divergent norm
in the trivial phase.

Infinite temperature autocorrelator and dephasing. The
existence of the corner Majorana zero modes manifests in
exponentially long (in system size L) coherence times for the
infinite temperature autocorrelators

C) = —— (@) (0)), (10)
dlmHA
where H, denotes the Hilbert space on the lattice A.
The autocorrelator at, for example, the corner in (1,1) can
be obtained from the autocorrelator of the d electron at
site (1,1),

Cri()~ (d} (1), ,(0)). an

dimH A
We consider a setup wherein the model in Eq. (1) is weakly
coupled to a large Markovian external environment. The ef-
fective time evolution of the reduced density matrix p of
the system is described by a local in time quantum mas-
ter equation of the form 9,0 = L[p], where L is the linear
Lindblad superoperator. The dual superoperator £L* governs
the evolution of observables via the Gorini-Kossakowski-
Sudarshan-Lindblad equation in the Heisenberg picture (i =
1) [57-62]

L[] =ilH, 1+ DT, (12)
+ 1 .
D= (J.l = 5 U ~}), (13)
k

where D*[-] is the dissipative superoperator, while the first
term on the right hand side of Eq. (12) describes the unitary
dynamics generated by the Hamiltonian . Specifically, we
choose Lindblad operators J; that implement orbital-selective
dephasing dynamics

Ji = 2K;nf, 14)
where Kj is the dephasing rate at unit cell j and ny =

O[.TO[.

19 with o = ¢,d. For jump operators with o = ¢, the
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FIG. 3. 2D autocorrelators Cy ;(¢) (full lines) and C, 1. (¢) (dashed
lines) [cf. Eq. (10)] for L x L = 10 x 10, h = 0.2, J = 1, and differ-
ent dephasing rates (different colors), when dephasing acts uniformly
on the whole system, i.e., K; = K [cf. Eq. (14) with o = c]. The time
correlation function Cy ;(¢) [C; ()] is enhanced (decays) almost im-
mediately under dissipative dynamics in comparison with the unitary
dynamics K = 0.

action of the dissipator on the Majorana operators is
given by

_Kiy2, a=1,4,
DZ:c[Vja]={ i@ (15)

0, a=23.
Therefore, under the purely dissipative dynamics with « = ¢,
the operators yjl’4 get exponentially damped with decay rate
K;, while the operators )/jz’3 remain unaffected. Notice that,
in the case of jump operators with o = d, the operators yjz’3

get exponentially damped instead while the operators yjl’4 are
independent of time. The same type of dynamics (with decay
rate 2Kj, .. j,) for the Majorana operators can also be found
by considering jump operators of the form

i = Vi [T (1 =285,

where m € [1, L?]. The Majorana zero modes that remain sta-
tionary under the dissipative dynamics generated by Eq. (12)

(16)

L—o0

satisfy £*[¢] — 0. By including the dissipator in Eq. (5),
we have

iHo, 9™ = —i[H,, p"~D] — D [p" D],

which holds only for the Majorana zero modes ¢;; and
¢r.1, which therefore survive the dissipative dynamics, while
¢1.L and ¢, do not. This is further confirmed by the en-
hanced coherence times for the autocorrelators C, ,(t) and
Cp..(t), which remain stable for parametrically longer times
as compared with the case without dissipation, as shown in
Fig. 3. In contrast the autocorrelators C, ,(t) and Cp (),
corresponding to the remaining two corner Majorana opera-
tors, decay immediately under the dissipative dynamics. As
the higher-order topological phase and the zero modes are
stable to disorder, one might expect that the Majorana zero
modes are also stable to disorder. This is, however, not im-
mediately obvious since the topological phase is a property

17)
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FIG. 4. 2D autocorrelator C; () with dissipative dynamics
(solid lines), dissipative dynamics and random intracell hopping
h (dashed lines), and dissipative dynamics with random sign but
constant magnitude of the intracell hopping h (dash dotted lines).
For all curves dephasing acts uniformly on the whole system, i.e.,
K;j =K [cf. Eq. (14) with o =¢], L x L =8 x 8, and J = 1. For
curves with dissipative dynamics and dissipative dynamics with flux
disorder |h| = 0.4/+/3. For the case with random intracell hopping,
at each unit cell j, the h; are independent and uniformly sampled
from —0.4 < h; < 0.4. Also in the presence of disorder, the infinite
temperature time correlation C; ; (¢) decays later than in the coherent
case K = 0.

of the ground state, while the Majorana zero modes are a
property of the entire spectrum. Nevertheless, we verify that
the autocorrelators remain stable to disorder both in the sign
and magnitude of h as shown in Fig. 4, and the correlation
times can even get enhanced. Whether the range of stabil-
ity of the Majorana zero modes is identical to that of the
ground state topological phase would require more detailed
exploration of the disorder physics, which we leave to future
work.

3D model. A natural generalization of the 2D Majorana
model (1) can be realized on a cubic lattice, with each unit cell
possessing a sixteen dimensional Hilbert space that admits the
action of eight Majorana operators 2 witha € {1, 2, ..., 8},
and j = (jx, jy, j;) labeling the unit cells of the 3D Ilattice;
cf. Fig. 1(b). Equivalently, each unit cell has four complex
fermions defined as ¢j = (' +iy))/2, dj = (f +iv})/2.
ej = ()/j5 + ing)/2, and f; = ()/j6 + iyj7)/2. The Hamiltonian
takes a similar form H = Hy + H;, with Hy and H; de-
scribing inter- and intracell Majorana hopping. We further
decompose Ho = H{ + Hy + M5, which describe hopping in
the X, 9, Z directions

. 2.1 4.3 6.,5 8,,7
Hy = _lJZ[Vj Vies 9 Vivs TV Vi ¥ Vi)
J

. 1.,3 4 2 5.7 8 6
Hy= =i (v vis +visr vl i
J

4 . 1 5 6.,2 7.,3 4 8
Hy = —id ) [viher +vvie + ik + bl 09)
J
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FIG. 5. 3D autocorrelators C;;(t) (full lines) and C; . (¢)
(dashed lines) [cf. Eq. (10)] for L x L x L =10 x 10 x 10,h = 0.2,
J = 1, and different dephasing rates (different colors), when dephas-
ing acts uniformly on the whole system, i.e., Kj = K [cf. Eq. (14)
with « € {c, e, f}]. The correlation function C; ; (¢) is enhanced,
while C; 1 1(7) decays almost immediately under dissipative dynam-
ics compared with the unitary dynamics K = 0.

and

H, = —ih Z

(G.2).G.b)la<b

Vv, (19)

where the sum in H, is over intracell nearest neighbor pairs
(j, @), (j, b) with the restriction a < b. Consider defining the
model on an open geometry of dimension L x L x L. In the
limit h = 0, the model hosts eight exact zero modes, one at
each corner of the cubic spatial geometry. For |h| < |J|, the

system possesses eight Majorana zero modes whose analytic
expressions are obtained perturbatively starting from the exact
zero modes. For instance, the Majorana zero mode localized
at corner (1,1,1) takes the form

3L-3

h\" )
$rii= )y <3) D (=it (20)
n=0 jeLil

We investigate the stability of the coherence times of the
corner Majorana operators under dissipation with the jump
operators of the form in Eq. (14) with @ € {c, e, f}. Similar
to the 1D [63] and 2D cases, we find that the coherence
times associated to the Majorana zero modes ¢; ;.1 and ¢ 11
get enhanced, while the autocorrelators corresponding to the
remaining Majorana zero modes decay immediately as shown
in Fig. 5.

Conclusions. In this work, we have established the ex-
istence of Majorana zero mode in higher-order topological
superconductors and demonstrated the robustness of the
consequent coherence times against a class of dissipative dy-
namics and disorder. In future work, it would be interesting to
investigate the robustness of the higher dimensional Majorana
zero modes against interactions.
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