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Periodically driven (Floquet) phases are attractive due to their ability to host unique physical phenomena
with no static counterparts. We propose a general approach in nontrivially devising a square-root version of
existing Floquet phases, applicable both in noninteracting and in interacting setting. The resulting systems are
found to yield richer physics that is otherwise absent in the original counterparts and is robust against parameter
imperfection. These include the emergence of Floquet topological superconductors with arbitrarily many zero,
π , and π/2 edge modes, as well as 4T -period Floquet time crystals in disordered and disorder-free systems (T
being the driving period). Remarkably, our approach can be repeated indefinitely to obtain a 2nth-root version
of any periodically driven system, thus, allowing for the discovery and systematic construction of exotic Floquet
phases.
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Introduction. It is recently proposed that by simply square
rooting an existing topological phase, a completely new mate-
rial displaying exotic edge states properties is obtained [1].
Inspired by Dirac’s idea [2] in treating the Klein-Gordon
equation [3,4], such a square-rooting procedure is obtained
by enlarging the degrees of freedom of the original system
and devising a new Hamiltonian, the square of which yields
two copies of the original system’s Hamiltonian [1]. In the
past few years, various proposals of square-root topological
phases have been theoretically made [5–14] and experimen-
tally verified [15–17]. These studies, however, concern only
the physics of static systems.

Since the past decade, various phases of matter that can
only be found in periodically driven systems (hereafter re-
ferred to as Floquet systems) have been identified and gained
significant attention [18–31]. Apart from being of fundamen-
tal interest, novel Floquet phases have been demonstrated to
yield advantages in quantum information processing [32–38].
It is, thus, envisioned that the possibility of square rooting
these Floquet systems will lead to even more exotic phases of
matter with a significant quantum technological impact. Such
square-root Floquet phases are developed here.

A static (Floquet) system is characterized by a Hermitian
Hamiltonian H (unitary one-period evolution operator U ).
This fundamental difference renders any known technique in
square-rooting static systems inapplicable for use in Floquet
setting. At first glance, square rooting a Floquet system might
even appear trivial. Indeed, by writing U = e−iHeff T for some
effective Hamiltonian Heff , its square root is obtained simply
through Heff → Heff

2 . However, it is important to note that
Heff is generically not physically accessible, especially for
Floquet phases that have no static counterpart [39–44]. In this
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case, simply reducing all system parameters by a half is not
equivalent to Heff → Heff

2 and will, thus, not yield the desired
square-rooted system.

In this Letter, we propose a general procedure for square
rooting a Floquet system in a systematic way, allowing its rep-
etition to further generate any 2nth-root version of the system.
Remarkably, unlike existing square-rooting procedures that
typically only work for specific single-particle static topolog-
ical systems, our proposal is applicable both to noninteracting
and interacting Floquet systems as demonstrated in the two
explicit systems studied below. These case studies further
reveal that such a square-rooting procedure is especially fruit-
ful to yield systems with exotic properties that are otherwise
absent in their original counterparts. For these reasons, our
proposal opens an exciting opportunity to discover and study
a variety of new Floquet phases.

General construction. Note that the one-period evolution
operator (hereafter referred to as a Floquet operator) of any
Floquet system can be written as

U = U2U1 =
[
T exp

(
−i

∫ T/2

0
H (t + T/2)dt

)]

×
[
T exp

(
−i

∫ T/2

0
H (t )dt

)]
, (1)

where H (t ) = H (t + T ) is the system’s Hamiltonian of period
T and T is the time-ordering operator. To obtain its square-
root version, we define a two-time-step Hamiltonian,

h(1/2)(t )

=
{

H (t ) 1+τz

2 + H
(
t + T

2

) 1−τz

2 for n < t
T � n + 1

2 ,

Mτy for n + 1
2 < t

T � n + 1,

(2)

where M is a system independent real parameter, n ∈ Z,
and τx/y/z are Pauli matrices representing an additional
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FIG. 1. Construction of a square-root Floquet system from any
time-periodic parent Hamiltonian, where H1 ≡ H (t = 0) and H2 ≡
H (t = T

2 ).

(pseudo)spin-1/2 degree of freedom. Such a square-root
Hamiltonian and its original counterpart are schematically
shown in Fig. 1. Our construction can be intuitively under-
stood as follows. Consider a particle initially living in the
subsystem τz = +1. It evolves under H (t ) for the first half
of the period and then moves to the other subsystem during
the second half of the period. As the Hamiltonian repeats,
the particle, which is now in the subsystem τz = −1, evolves
under H (t + T/2) for another half period and moves back
to the subsystem τz = +1 at the end of the second period.
That is, only after two periods will the particle experience the
full Floquet operator of the parent system, while remaining
on the same subsystem. On the other hand, the particle can
exhibit a nontrivial evolution over a period to yield various
new physics, some of which are highlighted in the case studies
below.

More explicitly, at MT = π , the Floquet operator associ-
ated with Eq. (2) takes the form

u(1/2) = e−i(π/2)τy

(
U1 0
0 U2

)
=

(
0 −U2

U1 0

)
. (3)

In particular, u2
(1/2) = diag(−U2U1,−U1U2), thereby repro-

ducing two decoupled copies of the target U (up to a
unitary transformation). Its ability to host two different or-
derings of U is, particularly, fruitful for potential parallel
processing applications. For example, topological invariants
of one-dimensional (1D) chiral symmetric Floquet topological
systems are defined from the winding numbers of Floquet
operators at two different orderings [45]. In such cases, the
simultaneous realization of both Floquet operators with our
construction can offer a significant speed up in detecting their
topological invariants.

At MT �= π , the diagonal elements of u(1/2) may, in gen-
eral, become nonzero, whereas its off-diagonal elements are
deformed away from U1 and U2. This renders u2

(1/2) no longer
diagonal and directly related to U . However, by intentionally
setting MT �= π in all the numerics below, we find that u2

(1/2)
inherits the main physics of the target system. Therefore,
Eq. (2) can still be regarded as the same square-root solu-
tion of the target model provided MT − π is not too large.

The insensitivity of our construction to the fine-tuning of M
demonstrates the robustness of square-root Floquet phases.

Importantly, our square-rooting procedure is scalable, i.e.,
it can be applied indefinitely to obtain the 2nth root of any Flo-
quet system, thus, opening avenues for obtaining a variety of
Floquet phases with even more exotic physical properties. In
the following, we explicitly apply our procedure on two rep-
resentative systems. For conciseness, we only focus on their
square-root counterparts, emphasizing the unique features not
found in the corresponding parent systems. In Ref. [46], the
4th- and 8th-root versions of such systems are presented.

Square-root Floquet topological superconductor with ar-
bitrarily many edge modes. A remarkable feature of Floquet
topological phases is their possibility to support any number
of edge modes through appropriate choice of system param-
eters [48–54]. To demonstrate our square-rooting procedure
at work, we consider the Floquet topological superconducting
model introduced in Ref. [53], which is described by a two-
time-step Hamiltonian switching between H1 and H2 at every
half period (two continuous variations of such a model are
further considered in Ref. [46]). There,

H� =
N∑

j=1

μ�c†
j c j +

N−1∑
j=1

(−J�c†
j c j+1 + ��c†

j c
†
j+1 + H.c.),

(4)
where μ�, J�, and �� are, respectively, the chemical po-
tentials, hopping amplitudes, and pairing strengths, � =
1, 2, c j is the fermionic operator at site j, and N is
the system size. In particular, at μ2 = −2J2 = −2�2 =
mμ1 = 2mJ1 = 2m�1 with m ∈ R, such a system supports
n pairs of Majorana zero modes (MZMs) and Majorana
π modes (MPMs) for nπ < m < (n + 1

2 )π [53]. Here,
MZMs and MPMs are topologically protected Hermitian
edge-localized operators which, respectively, commute and
anticommute with the system’s Floquet operator [32–34].
Even at the special parameter values above, such a system
has a very complex and unphysical effective Hamiltonian
of the form Heff ∝ arccos{cos[x cos(k/2)] cos[mx cos(k/2)]},
where x is a constant and k is the quasimomentum. There-
fore, the trivial square-root procedure Heff → Heff

2 is indeed
infeasible.

Following our general construction, the corresponding
square-root system is obtained as a two-time-step Hamilto-
nian h(FT SC)

(1/2) (t ) which switches between h(FT SC)
(1/2),1 = h1 + h2

and h(FT SC)
(1/2),2 = ∑N

j=1 Mic†
1, jc2, j + H.c. after every T/2 time

interval, where h� with � = 1, 2 take the form of Eq. (4) with
c j → c�, j . Physically, such a system represents a pair of p-
wave superconductors with interchain hopping applied during
the second half of the period. It can, in principle, be realized
by proximitizing two chains of semiconducting wires with
an s-wave superconductor such that h1 and h2 are achieved
through the same mechanism as that in the realization of Ki-
taev chain [55,56]. The interchain hopping is further obtained
and controlled by modulating the separation between the two
chains.

The Bogoliubov–de Gennes Floquet operator U , which is
related to the actual Floquet operator via u = 1

2�†U�, can be
explicitly obtained, and its exact form is detailed in Ref. [46].
The system’s quasienergy (ε) excitation spectrum is then
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FIG. 2. Quasienergy excitation spectrum of the (a) square-root
and (b) original Floquet topological superconductor of Ref. [54]. The
vertical lines mark the topological phase-transition points, whereas
(νπ , ν0 ) is a pair of topological invariants determining the number of
MPMs and MZMs in the original system. (c) Typical wave-function
profiles of the system’s edge modes. The system parameters are
chosen as μ2T = mμ1T = 2m, −J2T = mJ1T = 1.05m, −�2T =
m�1T = 0.95m, MT = 0.9π , and N = 50.

obtained from the eigenvalues e−iεT of U and is summarized in
Fig. 2(a). The associated quasienergy excitation spectrum of
the original system is plotted in Fig. 2(b) for reference. Note,
in particular, that both systems share the same topological
phase transition points, marked by parameter values at which
gap closing exists. MZMs and MPMs are associated with
quasienergy zero and π/T solutions, respectively, in Figs. 2(a)
and 2(b). Moreover, the following two features are clearly
observed.

First, the presence of MPMs in the original system leads
to the simultaneous presence of MZMs and MPMs in the
square-root system. This feature can further be analyti-
cally proven by computing a pair of topological invariants
(ν0, νπ ) and (ν (1/2)

0 , ν (1/2)
π ) for the original and square-root

system, respectively, [46,53]. In particular, ν0 (ν (1/2)
0 ) and

νπ (ν (1/2)
π ), respectively, determine the number of pairs of

MZMs and MPMs in the original (square-root) system. By
leaving the technical detail in Ref. [46], we indeed find
that νπ = ν

(1/2)
0 = ν (1/2)

π , thus, confirming our observation
above.

Second, the presence of MZMs in the original system leads
to the emergence of edge modes at ≈π/(2T ) quasienergy.
Recently, it was shown that such π/2 modes may become
parafermions [57–59] in the presence of interaction [60].
These π/2 modes are, however, not as ubiquitous as MZMs
and MPMs, and their construction previously involves a rather
elaborate driving scheme [60]. With our square-rooting proce-
dure, such π/2 modes can be systematically generated, and
their origin traced back from the topology of the squared
model. That is, whereas a topological invariant characteriz-
ing these π/2 modes in the square-root system directly is
presently unknown to us, the presence of π/2 modes can

still be inferred from the invariant ν0 defined on the squared
system.

As elaborated in Ref. [46], the presented square-root Flo-
quet topological superconductor inherits the chiral symmetry
of its parent system. This chiral symmetry is responsible for
protecting MZMs and MPMs in the system. Indeed, even at
imperfect square-root parameter MT �= π , MZMs and MPMs
remain pinned at 0 and π/T quasienergies, respectively, [see
Fig. 2(a)]. By contrast, the observed π/2 modes slightly
deviate from the expected π/(2T ) quasienergy due to the
absence of symmetry protection. It remains to be seen if the
presence of interaction that promotes these π/2 modes to Z4

parafermions in the ideal limit, such as via the mechanism
elucidated in Ref. [60], may render them more robust against
such an imperfection effect.

Square-root Floquet time crystals. Our construction is not
limited to single-particle systems. Indeed, it can be applied
to square-root a Floquet time crystal (FTC), i.e., a many-
body phase of matter characterized by robust subharmonic
observable dynamics [61–93]. Focusing first on the many-
body localization (MBL) protected FTC model of Ref. [62],
its square-root is obtained by plugging in

H (t ) = h jXj, H (t + T/2) = JjZ jZ j+1 + hZ
j Z j, (5)

to Eq. (2). There, Pj = Jj, h j, M, and hZ
j are each randomly

taken from a uniform set [P̄ − �P, P̄ + �P], Xj , and Zj are
Pauli matrices associated with the jth site in the 1D lattice,
and τx/y/z are additional Pauli matrices. As a rather unreal-
istic interpretation of the system, it describes a single spin
(τx/y/z) interacting with a 1D Ising model. In a more physical
setting, it can be effectively and more robustly realized with
two interacting and periodically driven spin-1/2 chains. As
detailed in Ref. [46], this is achieved by replacing Zj → Zj,A,
Xj → Xj,AXj,B, τz → Zj,AZ j,B, and τy → ∑N

j=1 Xj,B in Eq. (5),
where A, B label the two chains. The resulting system, which
involves at most nearest-neighbor two-body interactions, can,
in turn, be implemented with FTC successful trapped ions
[64,65] and superconducting circuit [71] platforms [91].

In Figs. 3(a) and 3(b), we plot the stroboscopic magneti-
zation dynamics, i.e., 〈Sz〉 = 1

N

∑N
j=1〈Zj〉, and its associated

power spectrum, i.e., 〈S̃z〉 = | 1
L

∑L
m=�〈Sz〉e−(�	T )/L|, under the

square root of Eq. (5) and a generic initial-state |ψ (0)〉 =∏N
j=1 e−i(π/8)Yj |00 · · · 0〉. Despite considerable deviation from

the ideal values MT = hjT = π , a robust 4T rather than 2T
periodicity is observed, thus, highlighting the system’s nature
as a square-root version of Ref. [62]. Moreover, Fig. 3(b)
reveals that this subharmonic behavior improves with the sys-
tem size. These features imply that such a square-root model
is indeed a genuine FTC. It is also worth noting that this
4T -period FTC is physically different from that proposed in
Ref. [91] due to the absence of the 	 = π

T peak in Fig. 3(b)
(cf. Fig. 2 of Ref. [91]).

The advantage of our square-rooting procedure over the
FTC construction proposed in Ref. [91] is the possibility to
devise large-period FTCs without MBL. This can be accom-
plished, e.g., by square rooting the disorder-free continuously
driven Lipkin-Meshkov-Glick (LMG) model. The latter is a
variation of the kicked LMG model of Ref. [76] in which
the Dirac-δ driving is replaced by a harmonic driving. It is,
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FIG. 3. Stroboscopic magnetization profile (a) and (c) and its
associated power spectrum (b) and (d) under square-root of (a) and
(b) Eq. (5) after averaging over 500 disorder realizations for a sys-
tem of eight (solid marks) and ten (dashed lines) particles, (c) and
(d) Eq. (6) for a system of 100 particles. In panel (c), the black dotted
lines show the corresponding profile under its parent system. The
system parameters are chosen as (a) and (b) h̄T = 0.92π , J̄T = 2,
h̄Z T = 0.3, M̄T = 0.95π , �hT = 0.05π , �JT = 1, �hZ T = 0.3,
and �MT = 0.05π , (c) and (d) JT = 1, hT = 0.1, φT = 0.9π

2 , and
MT = 0.98π . Note that in all panels, the interaction strength J is
comparable with that used in previous studies of FTCs, such as
Refs. [62,83].

thus, related to the model of Ref. [83]. Specifically, the parent
Hamiltonian to be inserted in Eq. (2) takes the form

H (t ) =
(∑

i, j

J

2N
ZiZ j +

∑
i

hXi

)
[1 + cos(ωt )] +

∑
i

φXi.

(6)

Since such a system preserves the total spin S2 =∑
i, j (XiXj + YiYj + ZiZ j ), numerical studies of very large sys-

tem sizes are accessible via exact diagonalization. In Figs. 3(c)
and 3(d), a clear and long-lived 4T oscillation profile is ob-
served from 〈Sz(t )〉 and its power spectrum, taking |ψ (0)〉 =
|00 · · · 0〉 at 100 particles as the initial state. By implementing
the system via two interacting LMG chains as detailed in
Ref. [46], a long-lasting 4T oscillation profile is observable
with merely ∼10 particles, a much smaller system size than
that required for observing a similar feature in Ref. [83] (see
Ref. [46] for the underlying mechanism).

By repeating the square-root procedure to the above sys-
tems, disordered and clean 2nT -period FTCs can, respectively,

be obtained (see, e.g., Ref. [46]). Importantly, they are also
observable at system sizes accessible with current technology
[64,65,71], thus, paving the way for experimentally exploring
FTCs beyond their subharmonic signatures, e.g., confirmation
of condensed-matter phenomena in the time domain [89,90].

Concluding remarks. We have proposed a systematic and
general construction of square-root Floquet phases exhibit-
ing exotic properties not found in the parent systems. We
explicitly applied our procedure to obtain Floquet topolog-
ical superconductors with arbitrarily many MZMs, MPMs,
and the elusive π/2 modes, as well as FTCs beyond period
doubling. As a primary advantage of our construction, it
amounts to coupling two copies of the parent systems and
can, thus, be realized in the same platform as the latter, in-
heriting their feasibility. Indeed, our square-root FTCs can
be directly implemented in the platforms of Refs. [64,65,71]
under the available resources [46]. While the parent model
of our square-root topological superconductor has not been
experimentally realized, the predicted π/2 modes can arise
from square rooting a simpler model. In an upcoming
work [94], we will experimentally demonstrate the signa-
ture of π/2 modes in an acoustic square-root topological
insulator.

Our procedure can generate nontrivial square-root Floquet
systems even if their parent systems have static counter-
parts. For example, a Hamiltonian of the form H (t ) = H0[1 +
sin(ωt )] has a simple Floquet operator U = e−iH0T that can
be trivially square rooted through H0 → H0

2 . However, by
explicitly plugging in H (t ) to Eq. (2), the resulting Floquet
operator instead yields a complex effective Hamiltonian that
has no static counterpart [46].

The above example demonstrates that a square-root Flo-
quet system is not unique. Consequently, the proposed
approach is not the only means of generating a square-root
Floquet system, but it provides a motivation and inspiration
for devising other square-rooting schemes. In particular, an al-
ternative procedure involving a smooth driving protocol rather
than the two-time-step drive proposed here would be desir-
able. Another possible improvement of the current scheme is
to exploit the time degree of freedom to replace the ancillary
Pauli matrices used in our construction. This may be achieved
by adapting the technique proposed in Ref. [44]. Finally, in
Ref. [95], we extend the present approach to generate a nth-
root Floquet phase, where n is any arbitrary integer.
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