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Rotational viscosity in spin resonance of hydrodynamic electrons
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In novel ultrapure materials electrons can form a viscous fluid, which is fundamentally different in its
dynamics from the electron gas in ordinary conductors with a significant density of defects. The shape of the
nonstationary flow of such an electron fluid is similar to the alternating flow of blood in large-radius arteries
[J. R. Womersley, J. Physiol. 127, 553 (1955)]. The rotational viscosity effect is responsible for the intercon-
nection between the dynamics of electron spins and flow inhomogeneities. In particular, it induces the spin
polarization of electrons in a curled flow via an internal spin-orbit torque acting on electron spins. Here, we
show that this effect in an electron fluid placed in a magnetic field leads to a correction to the ac sample
impedance, which has a resonance at the Larmor frequency of electrons. In this way, via the electrically detected
spin resonance, the Womersley flow of an electron fluid can be visualized and the rotational viscosity can be
measured.

DOI: 10.1103/PhysRevB.106.L041407

Introduction. In ultrapure materials with a small density
of defects, conduction electrons can form a viscous fluid at
low temperatures. The electric transport in such a fluid occurs
via the formation of inhomogeneous hydrodynamic flows,
controlled by particular shapes of the samples. This idea was
put forward many years ago for three-dimensional (3D) met-
als with strong electron-phonon coupling [1]. Recently, the
hydrodynamic regime of electron transport has been realized
in high-quality samples of graphene [2–7], the quasi-two-
dimensional metal PdCoO2 [8], the Weyl semimetal WP2 [9],
and high-mobility GaAs quantum wells [10–19]. These ex-
periments induced an avalanche of theoretical works (see, for
example, Refs. [20–44]), which were aimed at the formula-
tion and search for evidence of a hydrodynamic regime as
well as to study various types and regimes of flows of the
electron fluid.

An electric current in samples with a noticeable spin-orbit
interaction induces various interesting spin-dependent trans-
port effects. It was predicted nearly half a century ago for
Ohmic conductors, where the scattering of electrons on dis-
order dominates, that the spin-orbit interaction results in the
interconnection between electrical and spin currents [45,46].
An electric current j produces a transverse spin current qik ∼ j,
leading to the generation of spin density near the sample
edges (the direct spin Hall effect; this term was introduced
in Ref. [47]) and, vice versa, inhomogeneous distribution of
spin density results in corrections to the electric current (the
inverse spin Hall effect). In these phenomena, the relaxation of
the electron spin and the spin current are of large importance.
The relaxation time of the first process is much longer than
the relaxation time of the second one [48]. The action of both
direct and inverse spin Hall effects induces a correction to the
dc and the ac magnetoresistance in not too wide samples due
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to the formation of near-edge layers with the perturbed spin
density P [49,50].

In pure metals with a negligible density of defects, where
the hydrodynamic regime of charge transport is realized, the
effect of the rotational viscosity provides the interconnection
between the electric current and spin density. Namely, the
vorticity of the electron flow, ∇ × j, induces the difference
in the nondiagonal components of the momentum flux den-
sity, �ik �= �ki. Such a difference leads to the generation of
the spin density P due to conservation of the total angular
momentum in electron-electron collisions [51–55]. Similarly
to spin Hall effects, the rotational viscosity effect is related
to the band spin-orbit interaction of conduction electrons. In
particular, an anomalous spin-orbit correction to the electron
velocity leads to the mismatch of �ik and �ki. In defectless
samples, the spin current relaxation rate is of the order of the
interparticle scattering time 1/τee, while the relaxation rate of
the spin density is much lower, being typically proportional
to �2

SOτee [56–59], similarly to the case of Ohmic conductors
(here, �SO is a small frequency of spin precession of con-
duction electrons due to the band spin-orbit interaction). As a
reminder, let us note that in Ohmic materials the relaxation
time due to scattering on disorder τ enters the precession
spin relaxation rate �2

SOτ instead of the time τee in defectless
materials [60].

Recently, a thorough study of spin generation in hydro-
dynamic flows of the two-dimensional electron fluid was
performed [61]. Various microscopic contributions to the in-
terconnection between the spin current, the spin density, and
the electric current were calculated and compared. However,
the relation between the rotational viscosity effect and mi-
croscopic mechanisms studied in Ref. [61] (for a particular
geometry of the Poiseuille flow) remains unclear up to now.
In this way, it is of interest to propose experimental methods
to determine the rotational viscosity coefficient and/or other
kinetic coefficients responsible for the mutual transformation
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FIG. 1. Dynamic generation of the spin polarization in a hy-
drodynamic flow of two-dimensional electrons in the presence of a
lateral magnetic field and ac electric fields. The polarization density
(red and blue) and current density (brown) profiles are shown for
(a) the quasistatic Poiseuille [62] and (b) the strongly nonstationary
Womersley [63] regimes.

of the currents and the spin density in hydrodynamic
conductors.

In this Letter we demonstrate that, under a high-frequency
drive, a viscous flow of a two-dimensional electron fluid ex-
hibits electron spin resonance related to the dynamics of a
spin-polarized fluid in a weak magnetic field. The rotational
viscosity effect leads to dynamic spin-vorticity coupling,
namely, the spin density generated by a viscous flow with a
nonzero vorticity affects the flow itself, resulting in a correc-
tion to the charge current density. In this way, we propose a
purely electric method of observing the spin resonance in hy-
drodynamic conductors, for example, in high-mobility GaAs
quantum wells and graphene. The studied effect may allow to
measure the rotational viscosity of the electron fluid in these
materials.

High-frequency hydrodynamics of spin-polarized electron
fluid. We consider a flow of a two-dimensional electron fluid
in a defectless sample (see Fig. 1) in an external radio-
frequency electric field E0(t ) and magnetic field B. We imply
that the electrons form a Fermi gas. If the sample edges are
rough and the scattering of electrons on them is diffusive, a
nonstationary inhomogeneous viscous flow with the particle
flow density j0(r, t ) ∼ E0 is formed in the sample due to
the shear viscosity effect [32,40]. Our aim is to calculate the
spin polarization of electrons P(r, t ) in such a flow, induced
by the rotational viscosity, and to find the spin-related cor-
rection to the current density, J2(r, t ) = e j2(r, t ), and to the
total electric current I2(t ) = ∫

�
dSr J2(r, t ) (here, e < 0 is

the electron charge and dSr denotes the differential along the
one-dimensional section of the sample �).

In such a system the interconnection between J and P
is controlled, in particular, by the rotational viscosity effect.
This effect is microscopically induced by the band spin-orbit
interaction of conduction electrons, leading to spin-dependent
interparticle scattering and an anomalous correction to the
electron velocities [51,55,61]. These two processes establish
the connection between the antisymmetric part of the momen-
tum flux tensor �ik , i �= k, the curl of the flow, ∇ × j, which
can be interpreted as the local rotational frequency ωorb(r)

of the fluid, and the spin polarization density P [51,55]. The
particular form of this connection is dictated by the symmetry
of the system [64,65]. Rotational viscosity is the dissipa-
tive kinetic coefficient which interconnects the parts of the
nonequilibrium thermodynamic flux (�ik) and forces (P and
∂i jk) transforming under symmetry operations according to
the same one-dimensional irreducible representation [65]. For
isotropic systems with O(3) symmetry this interconnection
has the form [55,64,65]

�a
ik

m
= �ik − �ki

2m
= ηrεikl

(
[∇ × j] − μ(P − P0)

h̄

)
l

. (1)

For the two-dimensional fluid considered here we use the
components of this equation describing the flows in the xy
plane and three-dimensional spin polarization. Here, m is
the electron mass, ηr is the kinematic rotational viscosity
coefficient, εikl is the unit antisymmetric tensor, μ is the to-
tal chemical potential of degenerate electrons, P0 = S0/n0 =
χB/n0 is the equilibrium spin polarization, χ is the param-
agnetic spin susceptibility of the electrons, and n0 is the total
electron density. In Eq. (1) the product μP is the so-called
spin chemical potential [55] and thus μP/h̄ = (μ+ − μ−)/h̄
is the effective frequency of the spin rotation of electrons
at the spin-split Fermi surfaces (here, μ± are their chemical
potentials and the temperature is considered to be sufficiently
low, T � μ+ − μ−). Microscopic calculations show [55] that
in A3B5 quantum wells the rotational viscosity coefficient ηr

is proportional to the squared Rashba coupling constant.
The hydrodynamic equations for the flow density j, the spin

polarization P, and the spin current qik taking into account the
shear viscosity and the rotational viscosity effects in a weak
magnetic field can be written as

∂j
∂t

= eE0(t )

m
n0+ η 
 j− c2

s

ηr

η0
[∇× P],

∂Pk

∂t
+ ∂qik

∂xi
+ [� × P]k = −Pk − P0,k

τs
+ 2

ηr

η0
[∇ × j]k,

∂qik

∂t
= −c2

s

∂Pk

∂xi
− qik

τsc
, (2)

where η is the kinematic shear viscosity coefficient, cs =
vF /

√
2 is the velocity of sound, η0 = h̄/(2m) is the char-

acteristic value of the dimension of viscosity, the “quantum
viscosity” [42], � is the Larmor frequency due to the ap-
plied magnetic field B, τs is the spin relaxation time related,
for example, to the precession of the electron spins in the
spin-orbit effective magnetic field during the electron motion
between electron-electron collisions [56,57] (for this mech-
anism 1/τs ∼ �2

SOτee � 1/τee), and τsc is the spin current
relaxation time in electron-electron collisions due to spin
Coulomb drag [58,59] (it was shown that τsc ∼ τee in those
works). The form of Eqs. (2) follows from consideration of
Refs. [51,55]

The first line in Eqs. (2) is the hydrodynamic Navier-Stokes
equation for the evolution of the mean electron momentum,
containing the shear viscosity term and the rotational viscosity
term. That is, the momentum flux tensor term, −∂�il/∂xl ,
accounts for the two contributions, �ik = �s

ik + �a
ik , where

�s
ik = −m η(∂ ji/∂xk + ∂ jk/∂xi ) is the usual shear part of �ik
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for incompressible flow, while �a
ik is the rotational viscosity

contribution given by Eq. (1).
The second line of Eqs. (2) describes the evolution of the

electron spin, namely, its transfer by the spin current qik ,
rotation described by the Larmor frequency �, relaxation to
the equilibrium value S0 = n0P0, and the generation by the
torque Tk = εklq�

a
lq/m associated with the antisymmetric part

of �ik (1). We imply that the relaxation term also contains the
contribution from �a

ik
The third line of Eqs. (2) describes the evolution of the

spin current qik . Provided that the spin current relaxation
length vF τsc is sufficiently short, one can neglect the dissi-
pative transfer of the spin flux in this equation (unlike the
dissipative transfer of electron momentum described by �ik).
Additionally, we omit possible contributions to the local vari-
ation of the spin current, ∂qik/∂t , from the particle current j,
which are crucial for the spin Hall effect in Ohmic conduc-
tors [45,45,48].

We consider slow flows with the frequencies ω � 1/τee,
thus the time dispersion of the viscosities η and ηr is insignif-
icant. In this case, from the third line of Eqs. (2) we obtain
the direct connection between the spin polarization and the
spin current, qik = −Ds ∂Pk/∂xi, where Ds = c2

s τsc is the spin
diffusion coefficient.

The boundary condition describing the absence of spin
current at the closed part of the sample boundary ∂G takes
the form (∂Pk/∂n)|∂G = 0, where n = n(r) is the normal to
the curve ∂G. The diffusive boundary condition at the closed
part of the edges has the usual form, j|∂G = 0.

Spin resonance due to rotational viscosity. First, we study
the solutions of Eqs. (2) in a long sample. The magnetic
and the electric field both are directed along the sample:
E0(t ) = E0e−iωt + c.c., E0 = E0ex, B = Bex. In this geome-
try, all values are homogeneous along the x coordinate and
depend on the coordinate y along the sample section: Py(y, t ),
Pz(y, t ), j = jx(y, t ) (see Fig. 1). The spin current tensor has
two nonzero components: qxy and qxz.

The hydrodynamic Eqs. (2) take the form

(
−iω − η

d2

dy2

)
j = f0 + r1

dPz

dy
,

(
−iω + 1

τs
− Ds

d2

dy2

)
P± ± i� P± = r2

d j

dy
, (3)

where P± = Pz ± iPy, f0 = eE0n0/m, r1 = c2
s ηr/η0, r2 =

2ηr/η0. The boundary conditions are formulated at the lon-
gitudinal edges: j|y=±W/2 = 0 and (dP±/dy)|y=±W/2 = 0.

The first line of Eqs. (3) with ηr = 0 yields for the unper-
turbed particle flow j(y, t ) = j(y)e−iωt + c.c., where

j(y) = f0
i

ω

[
1 − cosh(κy)

cosh(κW/2)

]
, κ =

√
−i

ω

η
. (4)

Owing to the formula η = v2
F τ2,ee/4, where τ2,ee is the shear

stress relaxation time, we arrive at an estimate of the eigen-
value determining the characteristic width Lω = 1/Re κ of
the near-edge layers of nonstationary Womersley flow [63]:
κ ∼ √

ω/τee/vF . In the static limit ω → 0, the particle flow
profile (4) reduces to Poiseuille flow [62].
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FIG. 2. (a), (b) Profiles of the amplitude J0(y) of the unperturbed
electric current density J0(y, t ) = J0(y)e−iωt + c.c. in a long sample
in the parallel magnetic and electric field E0(t ) and B for different
parameters W/L and ωτs. Both values J0 and Pz are plotted in arbi-
trary units. (c), (d) Profiles of the amplitude of the spin polarization
Pz(y, t ) = Pz(y)e−iωt + c.c. in the electron fluid, arising due to the
rotational viscosity effect. The curves are plotted for the same sample
at the same parameters as shown in (a) and (b).

The eigenvalues of the unperturbed equations for the spin
polarization [the second line of Eqs. (3) with r2 = 0] are

λ± = (1/Ls)
√

1 + i(±� − ω)τs, (5)

where Ls = √
Dsτs is the spin diffusion length. The relation

between the shear viscosity and the spin characteristic lengths
Lω and Lλ = 1/Re λ± is as follows: Lω ∼ Lλ far from the
resonance frequency, | ± � − ω|τs � 1, and Lω � Lλ near
the resonance, | ± � − ω|τs ∼ 1.

Circular components of the spin polarization generated by
unperturbed flow (4) are first order by ηr and have the form

P±(y) = i f0

ω
r2

tλ± (y) − tκ (y)

λ2± − κ2
, (6)

where tξ (y) = sinh(ξy)/[ξ cosh(ξW/2)]. The profiles of the
electric current J0(y) = e j0(y) and the z component Pz(y)
of the spin polarization corresponding to Eq. (6) are drawn
in Fig. 2.

Correction to the particle flow j (2)(y, t ) = j (2)(y)e−iωt +
c.c. generated by nonzero spin polarization (6) is second order
by ηr and the equation for it is(

−iω − η
d2

dy2

)
j (2) = r1

dPz

dy
, (7)

where Pz = P(1)
z is given by the sum of circular components

P± after (6). The result of its solution is j (2) = ( j (2)
+ + j (2)

− )/2,
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where

j (2)
± (y) = r1 r2

i f0

ω

1

λ2± − κ2

×
{

cλ± (y) − cκ (y)

λ2± − κ2
− Fκ

8

[
sκ (y)

y

W/2
− cκ (y)

]}
.

(8)

Here, the notations sξ (y) = sinh(ξy)/[sinh(ξW/2)], cξ (y) =
cosh(ξy)/[cosh(ξW/2)], and Fξ = tanh(ξW/2)/(ξW/2) are
used.

The main part of the total current I (t ) = e
∫ W/2
−W/2 dy j(y, t )

associated with (4) is given by I0(t ) = I0e−iωt + c.c., where
the amplitude is I0 = (i e f0W/ω)[1 − F (κ )]. The spin-orbit
correction I (2)(t ) to it corresponding to j (2)(y) (8) has the
amplitude

I (2)

W
= r1r2

ie f0

ω

∑
±

1

λ2± − κ2

(
Fλ± − Fκ

λ2± − κ2
− F ′

κ

2κ

)
. (9)

It is seen from Eqs. (5) and (9) that Re I (2) as a function of
magnetic field exhibits spin resonance for sufficiently narrow
samples. This resonance originates from the formation of the
near-edge layers with the perturbed spin polarization P(y, t ),
which induces the correction I (2)(y, t ) to the current I0(t ).

The real part of the correction to the mean sample
impedance, 
Z = E0W/(I0 + I2) − E0W/I0, is plotted in
Fig. 3. This value is proportional to the squared rotational
viscosity, r1r2 ∼ η2

r [see Eq. (9)]. We see from Fig. 3 that
the higher is the ac frequency and the wider is the sample,
the narrower are the resonances at � = ±ω. The limiting half
width at W � Ls is estimated as 1/τs. The relative value of the
correction to the impedance ζ = Re 
Z (�,ω)/Re Z (ω) =
−Re I2/Re I0 in sufficiently wide samples, W � Ls is inde-
pendent of the sample width. The frequency dependence of ζ

is determined by the values κ (ω) and λ±(ω,�) [see Eq. (9)].
The measurement of ζ (�) at fixed ω, together with fitting

of the whole curves ζ (�) (see Fig. 3), may allow us to deter-
mine the rotational viscosity.
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FIG. 3. The relative spin-orbit correction to the real part of
the impedance, ζ = Re 
Z (�, ω)/Re Z (ω), for the two-dimensional
electron fluid in a long sample due to the rotational viscosity ef-
fect. This value is quadratic by the rotational viscosity coefficient:

Z ∼ η2

r . The curves are plotted in arbitrary units for the different
parameters W/L depicted on (a) for low and (b) high frequencies.
For better visibility, the neighbor curves are shifted in the vertical
direction by 0.1 at infinity, that leads to the almost same shifts at
maximal values of �/ω, �/ω = ±2.

Conclusion. We have shown that the paramagnetic res-
onance of the conduction electrons can be observed in
nonstationary viscous flow of two-dimensional electron fluid
owing to the rotational viscosity effect. The resonance
manifests itself in the spin-orbit correction to the sample
impedance. Measurements of this resonance may allow us to
determine the rotational viscosity coefficient of the viscous
electron fluid.
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