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We study the behavior of equilibrium spin currents near the magic angles of twisted bilayer and trilayer
graphene in the presence of Rashba spin-orbit coupling. There is a substantial difference in the properties
of local observables in twisted graphene layers, as compared with those in single and/or untwisted graphene
layers. Remarkably, when plotted as a function of the twist angle θ , the electronic charge density and the
equilibrium spin currents are nonanalytic at angles that are close to within 1% of the magic angles. In addition
to the occurrence of rich spin texture patterns, these findings enable the determination of magic angles within an
accuracy of less than 0.01◦ in terms of a scanning tunneling microscopy measurement of the local density and
spin-resolved measuring devices for measuring equilibrium spin currents.
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Introduction. Van Hove singularities in twisted bilayer
graphene (TBG) and the emergence of flat bands at certain
twisting angles were first reported in Refs. [1–3]. A contin-
uous model for exploring the electronic structure of TBG
that forms a moiré lattice was developed in Ref. [4] and
exposed the occurrence of magic angles θ2m, i.e., twist an-
gles at which the lowest (positive) energy band is flat versus
crystal momentum. Their origin was clarified in Refs. [5–7],
while the symmetries and topological content of this sys-
tem were analyzed in Refs. [8–10]. Recent reports have
shown that this system can host correlated insulating states
[11,12], unconventional superconductivity [13], distinct Lan-
dau level degeneracies [14], emergent ferromagnetism with an
anomalous Hall effect and quantized anomalous Hall behavior
[15–17], chirality [18], valley spirals [19], and optospintronics
[20]. The flatness of the band is very sensitive to the value
of the magic angle, hence, an accurate determination of the
magic angle is crucial [21].

In the present Letter we consider TBG and twisted trilayer
graphene (TTG) subject to a uniform perpendicular electric
field that causes Rashba spin-orbit coupling (RSOC) [22],
and substantiate the relevance of magic angles to the perti-
nent spin physics. The Bloch functions {�k(r)} of the lowest
conduction band at crystal momentum k are calculated and
employed to determine the charge density ρk(r) = |�k(r)|2
and equilibrium spin currents (ESCs) Ji j;k(r) as a function of
the twist angle θ (here, i = x, y, z is the polarization direction
and j = x, y is the velocity direction). The main results of this
Letter are as follows: (1) On varying the twist angle θ (for
fixed kx) ρkx (r) and Ji j;kx (r) are shown to have discontinuous
derivatives with respect to θ at angles {θ2(kx ), θ3(kx )} that are
close to within of the respective magic angles θ2m and θ3m

(obtained by minimization of the bandwidth). Hence, mea-

suring the local density [by scanning tunneling microscopy
(STM)] or ESCs (by optospintronic devices [20]) can serve
as an excellent tool for determining the magic angles. (2) The
symmetry Jyx = −Jxy and the equalities Jxx = Jyy = 0, valid
in single-layer graphene [23], are broken. (3) The relation
θ3m ≈ √

2θ2m is extended beyond the chiral limit. (4) Unlike in
single or double untwisted layer graphene, the ESCs depend
on the position r, implying the possible occurrence of spin
torque [24,25].

Formalism. Here, we develop the formalism for TBG (an
extension for TTG is straightforward). Consider massless two-
dimensional (2D) Dirac electrons in TBG lying in the x-y
plane with twist angles ±θ/2 subject to a uniform electric
field E = E0ẑ. We start from the continuous moiré band model
[8] wherein there is no valley mixing. The Dirac K points
in adjacent layers 1 and 2 (denoted {K1, K2}) are offset by
the twisting angle θ [26]. This procedure defines the moiré
Q lattice MQ shown in Fig. 6(b) of Ref. [8], wherein the
red and blue points, {Q1} and {Q2}, denote the K points in
layers 1 and 2, respectively. Occasionally, Q will denote both.
Adjacent K points of different layers are connected by three
vectors {q j} [see Eq. (5) below]. The θ dependent length of the
vectors |q j | = KD = 2K sin(θ/2) is the MQ lattice constant
(here, K = |K1| = |K2| [27]). The � point marks the center of
the unit cell, and the electron wave number is k = (kx, ky) ∈
BZ of MQ. Practically, the number NQ of Q points is cutoff
within a circle centered at the � point, thereby conserving the
rotation symmetries specified in Ref. [9]. Explicitly, NQ1 =
NQ2 = 50,⇒ NQ = 100. We denote by τ the isospin encoding
the two-lattice structure of single-layer graphene, by η the
pseudospin operator for the two layers and by σ the operator
for the electron real spin. The pertinent eight-dimensional
Hilbert space is then η ⊗ σ ⊗ τ. RSOC is introduced as
an SU(2) vector potential, A = [σ × ẑ]. In r space the
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Hamiltonian H = H0(r) + H1 is

H0(r) = η0 ⊗ [−iσ0∂r + λA] · τ

−θ

2
ηz[(−i)σ0∂r + λA] × τ,

H1 = η−σ0T † + η+σ0T . (1)

H is the extension of the Hamiltonian introduced in Eq. (1) of
Ref. [8], with RSOC included. Here λ, which is proportional
to E0, is the RSOC strength, and T is a 2 × 2 matrix in τ space
(see below).

We define shifted wave numbers pη = k − Qη (η = 1, 2
for layers 1,2). The basis eigenfunctions of H0(r) are
eipη ·rvi(pη ), where {vi(pη ) (i = 1, 2, . . . , 8)} are the eight-
dimensional eigenvectors of the 8 × 8 matrix obtained after
replacing −i∂r → pη in Eq. (1). The corresponding energies
are εi(pη ). Putting together these eight column eigenvectors
defines an 8 × 8 eigenvector matrix v(pη ). Both vi(pη ) and
εi(pη ) are expressible analytically. A Bloch eigenfunction of
H (an eight-dimensional vector) is expanded in plane-wave
spinors {e−iQη ·rw(pη )} [defined in Eq. (2)] as

�k(r) = eik·r
√

A

2∑
η=1

uηk(r)

uηk(r) =
∑

Qη∈MQ

e−iQη ·r
[

8∑
i=1

ai(pη )vi(pη )

]
︸ ︷︷ ︸

w(pη )

. (2)

Here, A is the area of a unit cell (moiré hexagon) in posi-
tion space, and {ai(pη )} are N (yet unknown) coefficients.
The functions {uηk(r)} are dimensionless, and periodic on
their respective triangular (Bravais) lattices in r space. The
Bloch functions {�k(r)} and the coefficients {ai(pη )} should
carry also a band number n that is occasionally omitted for
convenience. Two notational definitions are useful: (1) The
100 8 × 8 matrices {v(pη )}, are used to form an N × N block
diagonal matrix

V ≡ diag [v(pη )]︸ ︷︷ ︸
8×8

, pη = k − Qη, Qη ∈ MQ. (3)

(2) The N unknown coefficients on the right-hand side of
Eq. (2) are arranged to form a vector (of N components)
a ≡ {ai(pη )}, where i = 1, . . . , 8.

The eigenvalue equation for the vector a employs the Bloch
representation of the Hamiltonian H = V †HV in the presence
of RSOC:

Han(k) = εn(k)an(k),

HQ,Q′ = 1

A

∫
e−iQ·rH (r)eiQ′ ·rdr. (4)

HQ,Q′ is an 8×8 matrix in η ⊗ σ ⊗ τ space, and dim[H] =
N × N (N = NQ × 8 = 800). Explicitly,

H =
[

H0
Q1,Q1

H1
Q1,Q2

H1†
Q1,Q2

H0
Q2,Q2

]
, (Q1, Q2) = 1, 2, . . . , NQ,

HQ,Q′ ≡ H0
Q,Q + H1

Q,Q′ ,

H0
Q,Q(k) = η0 ⊗ [σ0p + λA] · τ

− 1

2
θ ζQδQ,Q′ηz ⊗ [σ0p + λA] × τ,

H1
Q,Q′ (k) = η− ⊗ σ0T †

Q,Q′ + η+ ⊗ σ0TQ,Q′ ,

TQ,Q′ =
3∑

j=1

[δQ−Q′ , q j + δQ′−Q, q j]Tj,

q j = KD

[
cos

(4 j − 3)π

6
x̂ + sin

(4 j − 3)π

6
ŷ
]
,

Tj = w0τ0+w1

[
cos

2π ( j−1)

3
τx+ sin

2π ( j−1)

3
τy

]
,

(5)

which is the extension of Eq. (A3) in Ref. [8]. As far as
the spectrum is concerned, the diagonalization of HQ,Q′ is
sufficient. For calculating wave functions, the eigenvectors {a}
are required from the solution of the first of Eq. (4), to be used
in Eq. (2).

Results for TBG. The spectrum {εn(k)} depends on the po-
tential parameters w0,w1, θ, λ. It is calculated on the segment

k ∈ K ≡
[

0 � kx � kD

√
3

2
, ky = 0

]
, (6)

joining the � and M points in MQ [28]. The spin observables
depend on k and (unlike the case of untwisted layers) on
the position r = (x, y) in the unit cell (due to the presence
of the coupling matrices {Tj}). We use the following param-
eters: K = 15.0533 (nm)−1 [5], w0 = 77.0371 meV, w1 =
110.053 meV, λ = 1.0544 ≈ 1 meV [29–31].

Our first task is to find the magic angle θ2m. There are
different criteria for its determination, such as vanishing of
the Dirac speed, minimal bandwidth, or maximal band gap to
higher bands. Ideally, the lowest band at the magic angle is
flat, but within a numerical scheme on a system of finite size
the situation is less simple. For every twist angle θ , the lowest
conduction band ε0(kx, θ ) > 0 depends weakly on kx ∈ K.
Then θ2m may be defined as the twist angle that minimizes
the difference

d (θ ) ≡ {Max[ε0(kx, θ )] − Min[ε0(kx, θ )]}. (7)

Using this criterion, we find the lowest magic angle to be
θ2m = 1.099◦. The fact that the band is not perfectly flat [so,
strictly speaking, different Bloch functions {�k(r)} are not
degenerate] poses the question of how to interpret the re-
sults obtained for different crystal momenta k. Recall that for
single-layer graphene [23], where the energy depends solely
on k2, it is possible to integrate the ESC over a constant energy
line that is a circle in the k plane. This integration proce-
dure over a constant energy line is not applicable here, and
the results should be analyzed for each k separately. Fortu-
nately, there are two factors that can ameliorate this obstacle:
(1) There is substantial progress in designing momentum-
resolved experiments [32–36], and (2) the angles {θ2(kx )}
at which the ESC displays nonanalyticity are close to θ2m

(within 1%). Therefore, for definiteness, in the following we
will present our results for the density and the ESC at r = 0
(the center of the direct moiré lattice unit cell), and for fixed
k = (kx, ky) = (0.05, 0) (nm)−1 ∈ K, Eq. (6). This choice is
convenient because, as shown below, somewhat accidentally,
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FIG. 1. Low-energy spectrum of TBG at θ2m = 1.099◦ for k ∈ K
in the presence of RSOC. Here, λ ≈ 10 meV is intentionally enlarged
so that the SO splitting is clearly visible. As λ → 0, the RSOC
splitting shrinks and the level pattern is commensurate with that of
Fig. 1(d) in Ref. [8].

at this specific wave number, θ2(kx = 0.05) = 1.0984◦ just
below θ2m = 1.0990◦.

The spectrum of several levels above and below the
(nearly) flat band is plotted in Fig. 1 for λ ≈ 10 meV (λ is
intentionally taken to be much larger than realistic values in
order to make the SO splitting visible). Compare with the
spectrum for λ = 0, shown in Fig. 1(d) of Ref. [8].

Density and spin observables in TBG are local, and ex-
pressed in terms of the Bloch functions �k(r), Eq. (2), and
pertinent operators ô that are 8 × 8 matrices in η ⊗ σ ⊗ τ

space. The spin and velocity operators are

ŝ = 1
2 h̄η0 ⊗ σ ⊗ τ0, v̂ = η0 ⊗ σ0 ⊗ τ. (8)

The ESC tensor operator is

Ji j = 1
2 [ŝiv̂ j + v̂ j ŝi] (i = x, y, z, j = x, y). (9)

In the case of m-fold degeneracy (for fixed k), the m degen-
erate eigenfunctions contribute incoherently to the pertinent
observable,

Ok(r) = 1

m

m∑
n=1

�
†
kn(r)ô�kn(r). (10)

For the charge density, ô = 18×8. Figure 2(a) shows the nonan-
alyticity at θ2(kx = 0.05) = 1.0948◦ just below θ2m = 1.099◦.
For the spin polarization S, ô = ŝ, but due to (nontrivial) time
reversal invariance the measured polarization should vanish.
The model of Ref. [4] is uniquely specified for the K valleys
of the two layers from which MQ is constructed. But time
reversal maps K → K′ so that each Bloch function �nk(r)
built for the moiré lattice of points K in Eq. (2) has its Kramers
partner � ′

nk(r) built for the moiré lattice of points K′. Due
to time reversal invariance the sum of the contributions of
the two functions to the spin polarization vanishes. In con-
trast, the ESC is even under time reversal and hence it can

(a)

(b)

(c)

FIG. 2. Local observables of TBG for λ = 1 meV as a func-
tion of θ , displaying singularities at θ2(kx = 0.05) = 1.0984◦ that
are very close to the magic angle θ2m = 1.099◦. (a) Dimensionless
charge density A|�k(0)|2 showing a step [a similar step with the same
θ2(kx ) occurs also for λ = 0]. (b) Jxx and Jyy. (c) Jxy and Jyx .

be calculated within the present model wherein the moiré
lattice is built solely from the K points of the two layers. We
find that the perpendicular components vanish, Jzx = Jzy = 0,
but the planar components are finite. The diagonal planar
components Jxx, Jyy are plotted in Fig. 2(b), while the nondi-
agonal planar components Jxy and Jyx are plotted in Fig. 2(c).
The singularities occur at the angle θ2(kx = 0.05) = 1.0984◦.
In single-layer graphene [23], Jxx = Jyy = 0 and Jxy = −Jyx.
Here, these symmetries are broken.

First chiral limit. References [5,8–10] showed that in
the continuous model of TBG there is an approximate an-
tiunitary particle-hole symmetry operator P that becomes
exact in the first chiral limit, w0 → 0. In this limit, the
ESCs vanish (together with the spin polarization), and there
are no relevant spin observables. By minimizing the low-
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est positive bandwidth it is found that θ2m−chiral = 1.0887◦ <

θ2m = 1.099◦. The density (not shown in here) is nonana-
lytic at the (somewhat smaller) angle, namely, θ2−chiral(kx =
0.05) = 1.0845◦ < θ2m−chiral = 1.0887◦. Thus, the magic an-
gles depend weakly on w0 (for w0 = 77 meV, θ2m = 1.099◦
and for w0 = 0 meV, θ2m−chiral = 1.0887◦).

Twisted three-layer graphene with RSOC. Recently, inter-
est has grown in twisted multilayer graphene [6,37–39]. We
shall now briefly address the ESC pattern and the energy
spectrum in TTG. As in Ref. [38], we consider a model of
alternating-twist three-layer graphene for which the relative
twists between two neighboring layers have the same magni-
tude but alternate in sign (see Fig. 1 therein). As in the case
of TBG, we show that as a function of θ , the density and
ESC are nonanalytic at the three-layer angle θ3(kx = 0.05).
We also extend a remarkable relation suggested (within the
chiral limit) in Ref. [38] relating θ2m and θ3m. Calculation of
the spectrum and ESC are carried out for the same parameters
as for the case of TBG. However, for numerical expediency,
we slightly decrease the cutoff used for TBG to include 84
(instead of 100) Q points, so the Hamiltonian matrix is N × N
with N = 1008. Using the notation in Eq. (5), the Hamiltoni-
ans of the TTG system are compactly written as

H (3) =

⎡
⎢⎣

H0
Q1,Q1

H1
Q1,Q2

0

H1†
Q1,Q2

H0
Q2,Q2

H1
Q2,Q1

0 H1†
Q2,Q1

H0
Q1,Q1

⎤
⎥⎦, (11)

where Q1 and Q2 run on 1, 2, . . . , 42. The technique for
extracting spin observables requires a simple extension of the
procedure used above for TBG. The Hilbert space is now � ⊗
σ ⊗ τ (� is the vector of spin 1 matrices encoding the three
layers), so that each Bloch function is now a 12-component
plane-wave spinor (after replacing η → � in the appropriate
expressions). By inspecting the minimum of d (θ ), it is found
that the TTG magic angle is θ3m = 1.5545◦. In analogy with
the TBG system, it is expected that θ3(kx = 0.05) (where the
local observables are singular) is very closely below θ3m. This
is indeed the case: The charge density for the TTG is shown in
Fig. 3(a), while the planar components of the ESC are shown
in Figs. 3(b) and 3(c). All the three observables display a
singularity at the angle θ3(kx = 0.05) = 1.5536◦. Therefore,
the magic angles of the two- and three-layer systems are in
excellent accord with the relation derived in Ref. [38] in the
first chiral limit, namely, the relation θ3m ≈ √

2θ2m is extended
to the case w0 > 0. Finally, the spectrum of the TTG system
at the magic angle θ3m is shown in Fig. 3(d). It is characterized
by a narrow band just above ε = 0 followed by a gap of about
60 meV.

Summary. In this Letter we considered TBG and TTG
subject to RSOC. For TBG, using the criterion of minimal
bandwidth we determined the magic angle and the spectrum
(see Fig. 1), and then analyzed the behavior of charge density
and ESC as a function of the twist angle θ . The fact that the
band is not ideally flat requires a separate analysis for each
crystal momentum kx. It is shown for kx = 0.05 nm−1, but we
checked that for any fixed kx ∈ K, the charge density and the
ESC are nonanalytic as a function of the twist angle θ as it
passes through a certain angle θ2(kx ) that is close to the magic
angle to within 0.01◦ (see Fig. 2). Symmetry relations among

(a)

(b)

(c)

(d)

FIG. 3. Results for TTG: Parameters are as in Fig. (2). (a) The
spectrum at λ = 0 for k ∈ K and θ3m = 1.5545◦ displays a narrow
band close to ε = 0, separated by a large gap of about 60 meV
from the next band. For λ = 1 meV there is a small SO splitting
that is invisible on this scale. (b) Dimensionless charge density
A|�kx=0.05(0)|2 vs θ . This pattern is nonanalytic at θ3(kx = 0.05) =
1.5536◦. Note that θ3(kx = 0.05) ≈ √

2 θ2(kx = 0.05). Thus, the re-
lation θ3m ≈ √

2θ2m (derived in Ref. [5] in the chiral limit) is extended
to the case w0 > 0. (c) and (d) Jxx, Jyy, Jxy, Jyx displaying nonanalyt-
icity at θ3(kx = 0.05) ≈ θ3m.
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ESC components displayed in single-layer graphene [23] and
untwisted bilayer graphene are broken in the twisted system.
The reason is that in single-layer graphene, the k · p expansion
around the Dirac points is assumed [23]. The k · p model
has a continuous rotation symmetry, which is higher than the
discrete symmetries of the TBG. This rotational symmetry
is broken in TBG. Unlike in Ref. [23], all spin observables
depend on the position r, implying the possible occurrence
of spin torque [24,25]. The pattern of density and ESC is
displayed here for r = 0 but θ2m is independent of r (within
the unit cell).

An analogous study with similar results is shown for TTG,
wherein the respective angles θ3(kx = 0.05) and θ3m are re-
lated to θ2(kx = 0.05) and θ2m by a factor ≈√

2. This extends
the relation θ3m ≈ √

2θ2m claimed in Ref. [38] in the chiral
limit (w0 = 0) also for w0 > 0.

Thus, in addition to the association of magic angles with
flat bands, correlated insulating states, unconventional super-
conductivity, ferromagnetism with an anomalous Hall effect,
and distinct Landau level degeneracies, they are also relevant
to spin physics. Following the recent developments in the
research of monolayer and (untwisted) multilayer graphene
spintronics [34,35], we hope our study will stimulate exper-
imental and further theoretical work on the role of magic
angles to the spin physics of moiré systems. This expectation
is corroborated by the hope that ESCs can be measured using
spin- and angle-resolved photoelectron spectroscopy [32–35]
and polarized light scattering [36].
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