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We consider the fate of the Wigner crystal state in a two-dimensional system of massive Dirac electrons
as the effective fine structure constant α is increased. In a Dirac system, larger α naively corresponds to
stronger electron-electron interactions, but it also implies a stronger interband dielectric response that effectively
renormalizes the electron charge. We calculate the critical density and critical temperature associated with
quantum and thermal melting of the Wigner crystal state using two independent approaches. We show that
at α � 1, the Wigner crystal state is best understood in terms of logarithmically interacting electrons, and that
both the critical density and the melting temperature approach a universal, α-independent value. We discuss our
results in the context of recent experiments in twisted bilayer graphene near the magic angle.
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When the Coulomb interaction between electrons in a
metal is sufficiently large compared to the electrons’ ki-
netic energy, the electron system spontaneously breaks the
continuous translational symmetry and forms a crystalline
arrangement of electrons [illustrated in Fig. 1(a)] called a
Wigner crystal (WC) [1]. In a two-dimensional (2D) electron
gas at low temperature, this crystallization typically occurs
in the limit of low electron density n, since the interaction
between neighboring electrons scales as n1/2 while the Fermi
energy scales as n for a dispersion relation with finite mass.
Consider, for example, the illustrative case of electrons with
a gapped Dirac Hamiltonian H0 = h̄v �σ · �k + (�/2)σz, which
has a corresponding dispersion relation

E (k) =
√

(h̄vk)2 + (
�

/
2
)2

. (1)

Here, v is the Dirac velocity, � is the band gap, �k is the wave
vector, and �σ represents the vector of Pauli matrices. When a
small concentration of electrons is added to this system, the
Fermi energy (relative to the band edge) is EF ∼ h̄2v2n/�,
while the interaction energy is of the order EC ∼ e2n1/2/εr .
(Here, h̄ is the reduced Planck constant and εr is the dielectric
constant. We use Gaussian units throughout this Letter). Thus,
the limit EC/EF � 1 that produces Wigner crystallization
corresponds to n � α2(�/h̄v)2, where α = e2/εr h̄v is the
effective fine structure constant.

The fine structure constant α is the dimensionless pa-
rameter that typically characterizes the electron-electron
interaction strength in Dirac systems. It is therefore no sur-
prise that, as indicated above, increasing α (say, by decreasing
the Dirac velocity v or the dielectric constant εr) leads to an
increase in the prominence of the WC state. However, it is also
known that increasing α leads to an increasing renormaliza-
tion of the dielectric constant, due to screening by interband
excitations. In a gapless 2D Dirac system like graphene, for
example, this renormalization is such that εr → εr (1 + πα/2)
[2,3]. The renormalization of the dielectric constant suggests

an interesting question about the fate of the Wigner crystal
state in the large-α limit. Namely, does the Wigner crystal
state continue to become more prominent as α is increased far
past α ∼ 1, or does the strong renormalization of the Coulomb
interaction produce a qualitative change to the simple argu-
ment above? What is the nature of the Wigner crystal state at
α � 1?

Historically, questions about large fine structure constant
have been largely hypothetical, since quantum electrodynam-
ics in vacuum is famously characterized by a small fine
structure constant αQED ≈ 1/137. Monolayer graphene rep-
resents a platform for which the fine structure constant is of
order unity or smaller, αgraphene ≈ 2.2/εr ,1 and theories based
on small α are typically quite accurate quantitatively [6,7].
On the other hand, twisted bilayer graphene (TBG) offers
a prominent example of a 2D Dirac system for which the
effective fine structure constant may be very large, due to a
nominal vanishing of v near certain “magic angles” of relative
twist (see, e.g., Refs. [8–13]). Motivated by this situation,
in this Letter we consider the generic question of Wigner
crystallization at large α. We comment specifically on TBG
at the end of the Letter.

Generally speaking, the screening of the Coulomb inter-
action between electrons at low frequency is described by
the static dielectric function ε(q) (where q is the wave vec-
tor), such that the (Fourier-transformed) screened potential is
given by Ṽ (q) = (2πe2/q)/ε(q). The form of ε(q) resulting
from interband transitions in a system with the gapped Dirac
Hamiltonian H0 has been calculated within the random phase

1Monolayer graphene does not permit WC phases since it has � =
0 [4]. On the other hand, Bernal-stacked bilayer graphene can exhibit
WC phases when there is a perpendicular electric field [5], which
opens a band gap.
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FIG. 1. (a) Schematic picture of a WC, showing the lattice
constant a of the Wigner lattice and the typical width w of the
electron wave packet. (b) The interaction potential V (r) in real
space, calculated (as an example) for α = 100. The three thin
lines (dashed/dotted/dashed-dotted) correspond to the three limiting
cases in Eq. (3). The inset shows, schematically, the gapped Dirac
dispersion relation E (k).

approximation [3,14]:

ε(q) = εr

(
1 + α

{
q0

q
+

(
1 − q2

0

q2

)
arctan

[
q

q0

]})
. (2)

Here, the typical momentum scale q0 ≡ �/h̄v is equal to half
the inverse Compton wavelength. The random phase approxi-
mation is justified by a 1/N expansion, where N is the number
of fermion flavors (N = 8 for twisted bilayer graphene), but it
is not perturbative in α [15].

In real space, the above expression for ε(q) implies a po-
tential V (r) that has three asymptotic regimes at α � 1:

V (r) 	
⎧⎨
⎩

2h̄v/πr, r � 1/q0
3
4� ln

[
8α

3q0r

]
, 1/q0 � r � α/q0

e2/εrr, r � α/q0.

(3)

This expression for V (r) is reminiscent of the interaction
energy between two point charges embedded in a slab of large
dielectric constant εr ∼ α, for which confinement of electric
field lines within the slab produces a logarithmic variation
of the potential at intermediate distances [16–18]. (A similar
logarithmic interaction arises between vortices in type-II su-
perconductors [19].) Notice that at short distances r � 1/q0

the interaction potential becomes independent of the electron
charge. Effectively, at such short distances the value of e2

is renormalized toward ∼e2/α by the interband dielectric

response, as in the problem of the “supercritical” impurity
charge [20–27]. The potential V (r) is plotted in Fig. 1(b),
along with the asymptotic expressions of Eq. (3), for the case
α = 100.

It is important to note that, in general, one can expect a
significant renormalization of the “bare” dispersion relation
when α is large. For example, at small � and large α one
would naively expect an excitonic instability, in which the
electron-hole binding energy becomes larger than the band
gap, leading to a condensation of excitons and the emergence
of a larger, many-body gap. Whether such an excitonic in-
stability actually occurs is a subtle question, which involves
careful consideration of the self-consistent screening (see,
e.g., Refs. [28,29]). Generally speaking, however, large α

produces significant interaction-induced renormalization of
the band structure, as discussed in detail elsewhere (e.g.,
Refs. [15,30]). In this Letter we take as given that a dis-
persion relation exists for low-energy quasiparticles that can
be described by Eq. (1), even when α is large. But the pa-
rameters � and v in this equation should be viewed as the
interaction-renormalized values, rather than the values that
would correspond to a hypothetical noninteracting system.
The effective value of α corresponding to a given nonin-
teracting band structure is a nontrivial question, since the
band velocity is generally renormalized upward by strong
interactions. In TBG, empirical measurements of the Dirac
velocity range between 7 × 104 and 2 × 105 m/s near the
magic angle [31–33]. Such velocities are significantly larger
than the predictions of noninteracting theories, but still pro-
duce an estimate for α in the range 2–6 (using εr ≈ 5, which
corresponds to a hexagonal boron nitride substrate).

The standard semiclassical picture of the WC phase is that
electrons are arranged in a triangular Wigner lattice, with each
electron residing in the potential well created by repulsion
with its neighbors. In this sense one can imagine that, deep
within the WC phase, each electron effectively constitutes a
harmonic oscillator (HO) in a locally parabolic potential. At
very low electron density n, the radius w of the HO ground
state wave function is much smaller than the lattice constant
a. However, as the density is increased, the ratio η = w/a
increases. The Lindemann criterion of melting states that at
a critical value of η = ηc ≈ 0.23 [34,35], the electron system
undergoes a phase transition from a WC to a Fermi liquid (FL)
state.

Below we estimate the critical density associated with
this melting transition using two complementary calculations.
First, we use the HO description (which is asymptotically
exact at small n) to analytically calculate the Lindemann ratio
deep within the WC phase. This approach allows us to esti-
mate both the critical density nc and the critical temperature
Tm associated with melting. Second, we perform a Hartree cal-
culation of the total energy using the many-body Hamiltonian
and a variational wave function, which gives us a separate
estimate of nc.

In order to produce an analytical estimation of the Lin-
demann ratio deep within the WC phase, we calculate the
parabolic coefficient of the confining potential U (r) for an
electron centered at the origin (r = 0). We use the standard
description for electrons deep in the WC state, in which all
other electrons are treated as point charges residing at points
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on the Wigner lattice [36]. The potential U (r) can be Taylor
expanded as

U (�r) − U (0) 	 r2

4

∑
i 
=0

[
V ′′(| �Ri|) + V ′(| �Ri|)

| �Ri|

]
, (4)

where �Ri denotes the position of the Wigner lattice point with
index i.

The harmonic oscillator frequency ω is defined by
U (r) − U (0) = 1

2 mω2r2, where m = �/2v2 is the electron
mass at low energy. In the limit α � 1 (weak-coupling limit),
the interaction potential is essentially unmodified by the inter-
band dielectric response, and V (r) 	 e2/εrr = αh̄v/r. In this
case, Eq. (4) gives

mω2 = αh̄vλ

2a3
, (5)

where λ ≈ 11.03 is a numerical constant and a =
(
√

3n/2)−1/2 is the lattice constant of the Wigner lattice.
Using the width of the corresponding ground state of a
2D HO,

√
〈r2〉 = (h̄/mω)1/2, the Lindemann ratio can be

computed to be

η =
(

8
√

3

λ2

)1/8(
n

α2q2
0

)1/8

(α � 1). (6)

This result is similar to the original stability calculation using
the Wigner-Seitz approximation [36].

In the opposite limit of α � 1 (strong-coupling limit) and
at densities 1/α2 � n/q2

0 � 1, the interaction relevant to WC
formation becomes logarithmic in nature [see Eq. (3)]. Insert-
ing such a logarithmic interaction directly into Eq. (4) does
not give a finite HO frequency, due to Earnshaw’s theorem
[37]. Instead, understanding the stability of the WC phase in
this limit requires one to think explicitly about the background
charge, as pointed out in the original paper by Wigner for
three dimensions [1]. We account for the background charge
by replacing the logarithmic interaction with the screened
Coulomb interaction in 2D, given by

V (r) = lim
κ→0

3�

4
K0

[κr

a

]
. (7)

Here K0 is the modified Bessel function of the second kind
and κ is the dimensionless screening parameter. In this de-
scription each electron is surrounded by a “screening cloud”
of compensating positive charge, which has a characteristic
radius a/κ . The physical case of uniform background charge
corresponds to the limit where neighboring screening clouds
are strongly overlapping, κ � 1. Inserting this expression for
V (r) into Eq. (4) and taking the limit κ → 0 after performing
the sum gives

mω2 = 3π

4
n�. (8)

The corresponding Lindemann ratio is

η =
(

2

π

)1/4( n

q2
0

)1/4

(α � 1). (9)

Thus, in the strong-coupling limit, the Lindemann ratio η

is independent of α. This independence can be seen as a

FIG. 2. Schematic phase diagram based on the Eqs. (6) and (9)
for the Lindemann ratio. “FL” denotes the Fermi liquid phase. Dif-
ferent WC regimes are labeled by the corresponding behavior of the
Lindemann ratio η. Both axes are plotted in logarithmic scale.

consequence of the renormalization of e2/εr toward h̄v, as
mentioned above.

We can produce an estimate for the quantum melting tran-
sition of the WC by extrapolating our results for η to the
critical value η = ηc. This procedure gives for the critical
concentration

nc 	 C1α
2q2

0 (α � 1), (10)

nc 	 C2q2
0 (α � 1), (11)

where C1 and C2 are numerical constants; naively setting
η = ηc in Eqs. (6) and (9) gives C1 ≈ 6 × 10−5 and C2 ≈ 4 ×
10−3. The corresponding phase diagram is shown schemat-
ically in Fig. 2, along with asymptotic expressions for the
Lindemann ratio.

An alternative method for calculating the Lindemann ratio
of the WC state, which does not require the HO approxima-
tion, is to use the variational principle with a many-electron
trial wave function. Specifically, we search for the state that
minimizes the expectation value of the Hamiltonian H =∑

i Êi + 1
2

∑
i j V (ri j ), where Êi is the kinetic energy operator

for electron i and V (r) is the screened interaction.
Following Refs. [38,39], we choose a trial wave function

that consists of Gaussian wave packets centered around the
points of the Wigner lattice. The width w of each wave packet
is treated as a variational parameter. Since the exchange in-
teraction between electrons is exponentially small deep in the
WC regime, in this limit we can accurately approximate the
electrostatic energy per electron using the Hartree approx-
imation. The corresponding expressions for the kinetic and
potential energy are derived in the Supplemental Material
[40]. The value of w that minimizes the total energy gives an
estimate of the Lindemann ratio, η = w/a. We perform this
minimization numerically in order to calculate the Lindemann
ratio as a function of n and α.

The result of this numerical calculation is plotted in Fig. 3
for a few example values of α � 1 [Fig. 3(a)] and α � 1
[Fig. 3(b)]. The numeric result for η closely matches the
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FIG. 3. Lindemann ratio as a function of electron density in the
limit of (a) α � 1 and (b) α � 1. The symbols show numeric calcu-
lations using the variational approach, and lines show our analytical
calculations using the HO approximation.

analytical expressions presented in Eqs. (6) and (9) in the
appropriate limits. Our numeric result for η is plotted as a
function of both α and n in Fig. 4. An estimation of the phase
boundary between the FL and WC phases is determined by
setting the variational value of η equal to ηc (black dashed
curve). This phase boundary is consistent with the analytical
estimates (red lines; compare also with Fig. 2). Of course, one
should keep in mind that neither calculation is quantitatively
accurate in the immediate vicinity of the phase transition, and
so our result for the critical density nc should be viewed only
as a scaling estimate.

So far we have confined ourselves to considering the
Wigner crystal state at zero temperature. We now discuss the
critical temperature Tm associated with melting of the WC
state. At finite temperature the HO description used above
admits a simple generalization, in which the value of 〈r2〉 is
replaced with the thermal expectation value. This expectation
value can be calculated in a straightforward way as

〈r2(T )〉 =
(

h̄

mω

)
coth

[
h̄ω

2kBT

]
, (12)

where kB is the Boltzmann constant. Using our analytical
result for the HO frequency ω [see Eq. (4)], this expression
enables us to estimate the melting temperature by setting
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FIG. 4. Lindemann ratio as a function of both α and electron
density, calculated numerically using the variational approach. The
dashed black line corresponds to η = ηc = 0.23, and therefore rep-
resents an estimation of the phase boundary between FL and WC
phases. The red dashed-dotted/dotted lines represent the analytical
estimation for the critical density [Eqs. (10) and (11)].

ηc =
√

〈r2(T )〉/a. This procedure gives

kBTm ≈ min

{
A1

αn1/2�

q0
, A2�

}
, (13)

at n � nc, where A1 and A2 are numerical constants which we
estimate as A1 ≈ 0.136, A2 ≈ 0.072. When the electron den-
sity n approaches nc, the melting temperature drops rapidly to
zero. Our numerical result for the melting temperature is pre-
sented in Fig. 5. Notably, the melting temperature approaches
a constant, n-independent value at α � 1 and n < nc.

In summary, in this Letter we have considered both the
quantum and thermal melting of the WC state in a gapped
Dirac system at arbitrary values of the effective fine struc-
ture constant α. We find two qualitatively different regimes,
depending on whether α is large or small. The limit α � 1
corresponds to the usual case of 1/r-interacting electrons, and

10−8 10−6 10−4 10−2

n/q2
0

10−6

10−4

10−2

100

k
B
T

m
/Δ

α = 0.1
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FIG. 5. The estimated melting temperature Tm as a function of
the electron density, plotted for a range of α values. In the limit
α → ∞ (black curve), the melting temperature approaches a finite,
universal value at n � nc.
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gives a critical density and a maximum melting temperature
that both increase as α2. On the other hand, at α � 1 the
Wigner crystal state can be understood in terms of logarithmi-
cally interacting electrons, with an overall interaction strength
that is renormalized toward the band gap � by the interband
dielectric response. This renormalization produces a univer-
sal, α-independent critical density nc ∝ q2

0, and a melting
temperature kBTm ∝ �.

At present, the most prominent platform for testing these
ideas is TBG [41,42], in which the moiré pattern created
by the relative twist produces strong renormalization of the
graphene band structure, leading to a small Dirac velocity
and apparently large α (as discussed above). Transport and
scanning tunneling microscopy studies indicate small energy
gaps at certain band fillings that are commensurate with the
moiré pattern (see, e.g., Refs. [43–47]). For example, transport
measurements (which produce a lower-bound estimate of the
energy gap [48]) typically yield values of � between a few
tenths of an meV and several meV [43–45], while scanning
tunneling microscopy studies suggest a gap as much as ten
times larger [46,47]. Following the logic of this Letter, one
can generically expect a WC state when the filling of elec-
trons n relative to the insulating value is very small. Since a
WC is typically an insulator due to pinning by disorder, one
should therefore expect that the insulating state occupies a
finite range of electron density, even in the limit of very low
disorder. Equation (11) suggests that this range of density is
of order 109 cm−2 (using, as an estimate, � ≈ 2 meV and
v ≈ 105 m/s) in the limit of low temperature. At temperatures
larger than the maximum value of Tm [which we estimate as

∼1.6 K using Eq. (13) and the same parameters as above], the
WC state should melt for all densities, leading to a disappear-
ance of the WC insulating state. Experimentally, the presence
of the WC state can generally be inferred by the presence of
a characteristic sharp “pinning voltage” in the I-V curve [49].
Tracking the onset of this pinning as a function of electron
density and temperature yields a phase diagram which can be
compared with Figs. 2 and 4.

Finally, we would like to draw a contrast between our
description of the WC state and that of Refs. [50,51]. We
describe the WC state using an effective low-energy band
structure, which in the context of TBG minibands requires
that all relevant momenta are small compared to the inverse
moiré lattice constant λm. Thus, our theory is applicable only
to situations where the density of electrons, relative to the gap,
is very small: nλ2

m � 1. Since our estimate for nc � 1/λ2
m ∼

1012 cm−2, the description is self-consistent for TBG. In con-
trast, Refs. [50,51] use the language of Wigner crystallization
to discuss situations where there are one or multiple electrons
per moiré cell. We also point out that, while we have estimated
the location of the WC-FL phase transition, this transition is
generally more complicated than a simple first-order transi-
tion and involves a sequence of microemulsion phases across
a narrow range of densities surrounding nc [52]. Such phases
are beyond the level of sophistication of our description.

We are thankful to Cyprian Lewandowski and J. C. W.
Song for useful discussions. This work was supported by the
NSF under Grant No. DMR-2045742.
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