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Composite fermions (CFs), exotic quasiparticles formed by pairing an electron and an even number of mag-
netic flux quanta, emerge at high magnetic fields in an interacting electron system, and can explain phenomena
such as the fractional quantum Hall state (FQHS) and other many-body phases. CFs possess an effective mass
(mCF) whose magnitude is inversely related to the most fundamental property of a FQHS, namely its energy
gap. We present here experimental measurements of mCF in ultrahigh quality two-dimensional electron systems
confined to GaAs quantum wells of varying thickness. An advantage of measuring mCF over gap measurements is
that mass values are insensitive to disorder and are therefore ideal for comparison with theoretical calculations,
especially for high-order FQHS. Our data reveal that mCF increases with increasing well width, reflecting a
decrease in the energy gap as the electron layer becomes thicker and the in-plane Coulomb energy softens.
Comparing our measured masses with available theoretical results, we find significant quantitative discrepancies,
highlighting that more rigorous and accurate calculations are needed to explain the experimental data.
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Composite fermions (CFs) have captivated the attention of
theorists and experimentalists in condensed matter physics for
over three decades [1–5]. When a two-dimensional electron
system (2DES) is subjected to a large perpendicular mag-
netic field (B), the ground states are typically dominated by
an electron-electron interaction. In the lowest orbital Lan-
dau level (LL), on the flanks of filling factor ν = 1/2, there
are series of fractional quantum Hall states (FQHSs) at ν =
p/(2p + 1) where p takes integer values [1–28]. (The filling
factor ν = nh/eB is defined as the number or fraction of the
occupied LLs; n is the 2DES density.) By attaching two flux
quanta to each electron to form a CF, the FQHSs of electrons
at electron filling factor ν can be explained as the integer
QHSs of CFs at CF filling factor p [1–4]. Moreover, at and
near ν = 1/2, the CFs have a well-defined Fermi sea [2–4]
whose intriguing properties have been explored in numerous
measurements [5,7–28]. Very recently, the experimentally elu-
sive Bloch ferromagnetism was demonstrated in CFs confined
to a very high quality, dilute GaAs 2DES [26]. Also, CFs have
been used to probe the delicate periodic structure of a Wigner
crystal hosted in a nearby 2DES [22].

A very fundamental parameter characterizing CFs is their
effective mass (mCF), which is the focus of our work. This
mass arises primarily from electron-electron interactions, and
its magnitude determines the energy separation between the
CF LLs (sometimes referred to as “� levels” [3]), which in
turn determines the size of the energy gaps for the FQHSs
at ν = p/(2p + 1). In realistic 2DESs with nonzero electron
layer thickness (w̃) and finite separation between LL energies,
mCF can be larger than its ideal value as both the softening of
the in-plane Coulomb interaction and the mixing between the
LLs can reduce the FQHS energy gaps and thus increase mCF

[3,29,30]. Unlike the FQHSs’ energy gaps which are believed

to be further reduced by the small but ubiquitous sample dis-
order, mCF should be immune to small disorder [14]. Despite
this fundamental nature of mCF, there have been no systematic
measurements of its magnitude. We report here mCF measure-
ments, via a Dingle analysis of the amplitude of the FQHS
resistance oscillations, in extremely low-disorder samples as
a function of w̃. By tuning w̃, the strength of the Coulomb
interaction can be controlled. We show that indeed disorder
does not seem to affect the magnitude of mCF, in contrast to
the energy gaps which are reduced by disorder. We then make
a close comparison of the measured mCF with the results of
available calculations [29,30]. We find that the measured mCF

are typically larger than the calculated values, suggesting the
need for more rigorous and accurate calculations to account
for the experimental data.

We studied ultrahigh quality 2DESs confined to
modulation-doped GaAs quantum wells (QWs), with well
widths (w) ranging from 20 to 70 nm, grown on GaAs
(001) substrates. The QWs are flanked by 150-nm-thick
Al0.24Ga0.76As barriers, and the dopants are placed in
doping wells [31]. The 2DESs have an electron density
n � 1.1 × 1011 cm−2 and transport mobility μ � 6–18 × 106

cm2/V s [28]. We refer to samples with different w by
Sw. In the main text, we primarily present results from
S30. Data for some of the other samples are shown in the
Supplemental Material (SM) [32]. The samples have a 4 × 4
mm2 van der Pauw geometry, with alloyed InSn electrical
contacts at the corners and edge midpoints. We used 3He
and 3He-4He dilution refrigerator systems, and conventional
lock-in techniques for magnetoresistance measurements.

In Fig. 1(a) we present a longitudinal resistance (Rxx) vs B
trace for S30 near ν = 1/2 at T � 25 mK. The trace exhibits
numerous minima corresponding to FQHSs at ν = p/(2p +
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FIG. 1. (a) Longitudinal resistance Rxx vs B, at T � 25 mK, for
S30, a GaAs 2DES with density �1.1 × 1011 cm−2 confined to a 30-
nm-thick QW. Several minima in Rxx are marked indicating FQHSs
up to ν = 10/19 and 10/21. The electron’s charge distribution (from
self-consistent calculations at B = 0) for a 30-nm-wide QW is shown
as an inset. The electron layer thickness (w̃) is defined as the standard
deviation of the charge distribution from its center. The cartoon to the
right of the charge distribution depicts a two-flux CF in an electron
layer with finite thickness. (b) Rxx vs B traces near ν = 7/15 for S30,
at different temperatures: T � 99, 143, and 248 mK. The variables
involved in the Dingle analysis, Rmax and Rmin, are marked with black
circles. (c), (d) Plots of �R/(R0T ) vs T , and the fits to the Dingle
expression to extract mCF at ν = 7/15 for S30 and S70. The deduced
mCF are 0.66 and 1.22 for S30 and S70.

1) as marked in Fig. 1(a). The parameter p is the �-level
filling factor for CFs [1,3,4]. We find Rxx minima up to ν =
10/21 and 10/19 (p = +10 and −10), highlighting the very
high quality of our 2DES. The sequence of high-order FQHSs,
e.g., ν = 10/21–8/17 and 10/19–8/15, appear as resistance
oscillations emanating from ν = 1/2. Further away from ν =
1/2, well-developed FQHSs show vanishingly small Rxx. The
trace in Fig. 1(a) has a striking resemblance to the Shubnikov–
de Haas resistance oscillations and integer QHSs emerging
from a Fermi sea (of CFs) around zero effective magnetic
field, where Beff = B − B1/2 [7]. These experimental signa-
tures are in accordance with the well-established theory of
CFs [1–4] that treats the FQHSs of electrons as the integer
QHSs of CFs. Within the CF picture, the energy gap for a
given FQHS is the CF cyclotron energy h̄ωCF = h̄eBeff/mCF.

We employ the standard procedure used to measure the
effective mass of electrons near B = 0 [33,34] to quantita-
tively deduce mCF around ν = 1/2. This entails an analysis
of the temperature dependence of the amplitude of resis-
tance oscillations at specific fractional ν using the Dingle

FIG. 2. (a) CF effective mass mCF vs B1/2 for a S30. The open
circles represent mCF determined from a Dingle analysis at FQHS
fillings. The dashed line is a fit through the data points. (b) Black tri-
angles are the energy gaps ν�, measured from Arrhenius plots of Rxx

vs 1/T [28]. They are shown as a function of (e2/4πε0εlB )/(2p + 1),
where ν = p/(2p + 1). The black lines are linear fits to the black
data points. The open red circles are ν� deduced from the cyclotron
energy of CFs, h̄ωCF = h̄eBeff/mCF, where we use the values of mCF

shown in (a). The red lines are linear fits to the open circles.

expression [33,34] �R/R0 = 4 exp(−π/ωCFτq)[ξ/ sinh(ξ )].
The factor ξ/ sinh(ξ ) represents the T -induced damping,
where ξ = 2π2kBT/h̄ωCF, and τq is the CF quantum lifetime.
Other relevant parameters are defined as �R = (Rmax − Rmin)
and R0 = (Rmax + Rmin)/2; see Fig. 1(b) for the definition of
Rmax and Rmin. The Dingle analysis of the FQHSs near ν =
1/2 has been successfully implemented in numerous studies
[11–15,19] to obtain mCF.

Figures 1(b)–1(d) present the Dingle analysis applied to the
resistance oscillations around ν = 7/15 for S30 and S70. The
trace in Fig. 1(b) shows the temperature dependence of Rxx.
We plot �R/(R0T ) vs T on a semilog plot in Figs. 1(c) and
1(d), and fit the data to the Dingle expression to determine
mCF. The derived masses for S30 and S70 are mCF = 0.66 and
1.22, in units of free electron mass m0 which we will use
throughout this Letter. The mass is larger for the wider QW,
as a direct consequence of the softening of the short-range
Coulomb interaction for a thicker electron layer [35]. Note
that in our experiments the density is kept fixed while w

changes for different samples.
In Fig. 2(a), mCF measured from Dingle analysis are shown

as open circles at many ν as a function of B1/2 for S30. Our
measured mCF are about 10–20 times larger than the electrons’
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FIG. 3. (a) Red circles: Measured mCF vs electron layer thickness w̃ for ν = 3/7. The data show that mCF increases for larger w̃. We have
added three extra experimentally measured mCF, as open brown, purple, and black symbols from Refs. [11,12,15], respectively. The blue, green,
and magenta solid symbols represent mCF derived from equating the theoretical energy gaps calculated in Refs. [29,30] to the CF cyclotron
gap. The calculations in Ref. [29] are based on the local density approximation (LDA) and the Zhang–Das Sarma (ZD) potentials. (b) Open
symbols: Energy gaps 3/7� vs w̃ for ν = 3/7. The open red symbols are 3/7� obtained by converting our measured mCF to energy gaps, and
the open black triangles are 3/7� measured from Arrhenius plots of Rxx minimum vs 1/T [28]. The dashed lines are linear fits to the data
points. The solid symbols are the theoretically calculated 3/7� from Refs. [29,30]. The cartoon between the panels represents a two-flux CF
with thickness 2w̃.

effective band mass (mb = 0.067) in GaAs. Despite some
scatter, the mCF data points follow an approximately linear
trend as a function of B1/2 [dashed line in Fig. 2(a)], in accor-
dance with the expected dependence of mCF on the Coulomb
energy EC = e2/4πε0εlB ∝ B1/2, where lB = √

h̄/eB is the
magnetic length and ε is the dielectric constant (ε = 13 for
GaAs) [2]. In the SM [32], we report additional data for S60

and S70.
Before summarizing our measured mCF for different sam-

ples and comparing them to the results of the calculations,
we would like to demonstrate that the measured mCF are not
affected by disorder. For an ideal 2DES, the energy gaps
(ν�) for the FQHSs are expected to scale as ν� = (C/|2p +
1|)(e2/4πε0εlB) [2,3], where C � 0.3 and ν = p/(2p + 1).
Figure 2(b) displays ν� vs (e2/4πε0εlB)/(2p + 1) (black
symbols) measured for sample S30 for ν up to 8/17 and 8/15
using two different techniques. The black triangles represent
ν� determined from the standard procedure of making Arrhe-
nius plots of Rxx minimum as a function of temperature and
fitting the data to Rxx ∝ exp(−ν�/2T ) [7,13,25,28,36,37]. In
Fig. 2(b), we also show black lines representing fits to the
measured gaps. The magnitude of the negative intercepts of
these lines with the y axis provides an estimate of the phe-
nomenological disorder parameter 
 based on the assumption
that disorder reduces the gaps for different FQHSs by a fixed
amount equal to 
 [7,13,25,28]. For the data of Fig. 2(b), we
find 
 = (0.7 ± 0.2) K.

In Fig. 2(b), using red open circles, we also plot values
for ν� deduced from our measured mCF [Fig. 2(a)] and us-
ing the expression ν� = h̄ωCF = h̄eBeff/mCF. The red lines,
which are fits to the gaps deduced from mCF, intercept the y
axis at (0.04 ± 0.13) K, i.e., effectively at zero. (In the SM
we present similar plots for S60 and S70 showing essentially
the same behavior as in Fig. 2. The nearly zero value of the
intercept suggests that the measured mCF in our samples are
insensitive to disorder. A similar conclusion was reached by

Du et al. [14] from an analysis of the FQHSs’ energy gaps
and mCF.)

Figure 3(a) highlights the first main finding of our study:
It displays the dependence of the measured mCF (red open
circles) on electron layer thickness (w̃). We focus here on
data at ν = 3/7 as a representative filling factor; data at other
fillings are included in the SM [32]. We have chosen to focus
on ν = 3/7 because (i) it is relatively far from ν = 1/2 near
which there is an apparent divergence of mCF, (ii) the resis-
tance oscillation surrounding ν = 3/7 is well behaved, and
(iii) there is available theoretical data as we discuss below.
Note that w̃ in Fig. 3 is given in units of the magnetic length
łB. We use a Schrödinger-Poisson solver [38] to calculate the
charge distribution in a QW self-consistently at B = 0, and
define w̃ as the standard deviation of the charge distribution
from its center. The charge distribution for S30 is shown in
the inset of Fig. 1(a). As seen in Fig. 3(a), the measured mCF

increases with increasing w̃, manifesting the weakening of the
Coulomb interaction in samples with larger w̃.

In Fig. 3(a), we have also included data points from
three previous studies which reported mCF from Dingle
analysis [11,12,15,39]. These studies used 2DESs confined
to GaAs/AlGaAs heterojunctions. To determine w̃ for the
2DESs in these samples, we used a Fang-Howard wave func-
tion [35]. In Fig. 3(a) the data points from Refs. [11,12,15]
are clearly consistent with our results. Given that the sample
of Ref. [15] has about twice smaller mobility than our S20

sample, the consistency seen in Fig. 3(a) provides additional
evidence that disorder is playing a minimal role in affecting
the measured mCF. We would like to emphasize that the dis-
order independence of the effective mass deduced from the
Dingle analysis has also been reported for electrons (near
B = 0) in numerous studies [40–42]. There is also theoretical
justification [34] that, at least for certain disorder broaden-
ing of the LLs, the two factors in the Dingle expression,
exp(−π/ωCFτq) and ξ/ sinh(ξ ), are disentangled, so that a
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plot of the T -dependent damping of the magnetoresistance
oscillations based on the ξ/ sinh(ξ ) factor [see, e.g., Figs. 1(c)
and 1(d)] would yield a mass that is independent of disorder.

Next, we focus on the second main contribution of our
work, namely a comparison of our measured mCF to the results
of available theoretical calculations that account for w̃. Park
et al. [29] calculated the energy gaps (�) of high-order FQHSs
for 2DESs confined to w = 15-, 20-, and 30-nm-wide GaAs
QWs using two models: local density approximation (LDA),
and the Zhang–Das Sarma (ZD) model interaction [35]. The
CF mass can be deduced by equating the theoretically calcu-
lated � to the cyclotron energy, � = h̄eBeff/mCF. We plot mCF

obtained as such using solid blue circles and green squares
in Fig. 3(a) for the LDA and ZD interactions, respectively.
Using exact diagonalization techniques, Morf et al. [30] also
calculated � as a function of w̃; we include mCF deduced from
their � in Fig. 3(a) by solid magenta triangles. It is clear
in Fig. 3(a) that there are major discrepancies between the
measured and calculated mCF in the entire range of w̃. Since
mCF should not be affected by disorder, this discrepancy is
particularly surprising.

For the sake of completeness, in Fig. 3(b) we show 3/7�

calculated in Refs. [29,30] for ν = 3/7 vs w̃ (solid symbols),
as well as 3/7� we obtain by converting our measured mCF

to energy gaps (open circles). As anticipated from Fig. 3(a),
all 3/7� gaps decrease with increasing w̃. In Fig. 3(b) we
also show the ν = 3/7 energy gaps directly measured in our
experiments from the Arrhenius plots of Rxx minimum vs 1/T .
The values for these directly measured 3/7� are the lowest and
have a large scatter, likely reflecting the role of disorder in
their determination. The 3/7� deduced from the experimen-
tally measured mCF (open circles) are larger and have less
scatter. Nevertheless, they too fall below the calculated gaps
(solid symbols), especially at small w̃. It is worth mentioning
that the energy gaps measured (via Arrhenius plots) for the
ν = 1/3 FQHS also exhibit the largest discrepancy with the
theoretical values at smallest w̃ [28].

A few remarks are in order. First, it is worth emphasiz-
ing that the results presented here are complementary to the
energy gap measurements (through Arrhenius plots) reported
previously [7,25,28]. The dependence of the gap on layer
thickness reported in Ref. [28], e.g., was primarily for the
strongest FQHSs at ν = 1/3 and 2/3. In our work here we
focus on mCF for higher-order FQHSs. Indeed, in our ultrahigh
quality 2DESs, it is not possible to reliably determine mCF for
the 1/3 and 2/3 FQHSs because the resistance oscillations on
their flanks deviate from the expected sinusoidal form, thus
rendering the application of the Dingle analysis problematic
[11,14]. Second, in some samples, the measured mCF exhibit

an apparent divergence for the highest-order FQHSs as ν =
1/2 is approached [see, e.g., Fig. S2(a) of the SM [32] for
the 70-nm-wide QW sample]. The origin of this anomalous
divergence, which has also been reported before [13–15],
remains a mystery. It is important to note that the filling factor
(ν = 3/7) for which we present data in Fig. 3 is relatively far
from ν = 1/2 to avoid the divergence complication [Figs. 2(a)
and S2(a)]. Third, in the SM [32], we present data at three
additional fillings, ν = 4/9, 5/11, and 4/7 which are also out-
side the divergence region. The conclusions described above,
namely the strong increase of mCF with increasing layer thick-
ness and the discrepancy with the calculated values, also apply
to data at these fillings.

We close by emphasizing that our reported mCF provide an
ideal set of data for comparison with calculations, as they do
not depend on disorder. The significant discrepancy between
our measured mCF and available calculations is puzzling. It
is tempting to attribute the discrepancy to the fact that the
calculations did not include the role of LL mixing [43]. In-
deed, it is known that, at least for the principal FQHSs such
as those at ν = 1/3 and 1/5, such mixing would lower the
FQHS energy gaps and thus raise mCF [28,44–47]. This could
lead to a better agreement between the experimental data and
calculations. However, it is worth mentioning that some recent
calculations conclude that, surprisingly, including LL mixing
might in fact lower mCF [48]. We hope that future calculations
that more rigorously take into account the role of both electron
layer thickness and LL mixing for high-order FQHSs would
settle the discrepancies, and perhaps even explain the apparent
divergence of mCF near ν = 1/2 [49].
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