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We present a methodology for probing the details of electronic susceptibility through minimally invasive
nuclear magnetic resonance techniques. Specifically, we classify electron-mediated long-range interactions in
an ensemble of nuclear spins by revealing their effect on simple spin echo experiments. We find that the pulse
strength and applied field orientation dependence of these spin echo measurements resolves the spatial extent
and anisotropy of electronic spin susceptibility. This Letter provides an alternate explanation to NMR results
in superconducting and magnetically ordered systems. The methodology has direct applications for sensing and
characterizing emergent electronic phases.
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Nuclear magnetic resonance (NMR) traditionally measures
dissipation using the temperature dependence of the spin-
lattice relaxation rates (T1) or spin-spin relaxation rates (T2)
[1–4]. Changes in dissipation rates can be compared to models
for electron-nuclear or phonon-nuclear interactions, allowing
for the microscopic observation of electronic phases. This
standard approach for NMR as an experimental probe pro-
vides relationships between electronic spin susceptibility at
high-symmetry points and the dissipation rates. NMR is an at-
tractive tool for probing electronic ground state properties as it
uses low-frequency excitations relative to electronic energies.
Recently identified quantum phases of matter may encode
details of their intricate structure into NMR responses in ways
that lie outside this current paradigm.

It is not uncommon in NMR studies of strongly correlated
materials to observe unusual time-asymmetric features from
standard spin echo protocols. These are typically classified
as experimental artifacts, often attributed to an uncontrolled
phase transition as strong rf pulses can cause electronic heat-
ing in the sample [5–8]. Inspired by these observations, we
provide an alternate explanation for such unconventional sig-
nals by investigating the time evolution of nuclear spins with
electron-mediated interactions on a two-dimensional (2D)
lattice. When the interaction couples nuclei more than a
few lattice lengths apart, clear signatures emerge in NMR
spectra during pulse angle sweeps, including evidence of an
anisotropic electronic structure. The radial form and range
of the interaction is also partially recoverable from a careful
analysis of the spin dynamics. As the details of the nuclear
interaction are inherited from the electronic spin susceptibil-
ity, one can determine many features of electronic spin-spin
correlation previously inaccessible by NMR. In this Letter
we demonstrate how to extract the range and anisotropy of
electronic spin correlations through a series of simple NMR
experiments in correlated phases of solid matter.

Long-range interactions between magnetic particles
through conduction electrons have been studied previously
[9–13], but a theory for an interacting lattice of spinors with
long-range couplings is underdeveloped. The general model
for coupled nuclear spins is well understood [14], with many
packages available for treatment of the full Hilbert space
(limited to N ≈ 20 spins) [15–18]. Truncated Liouville space
representations can handle up to N ≈ 1000 spins [19–21],
but we find that even this is not large enough to capture the
emergent properties from long-range electronic correlations.
Classical treatments with only nearest-neighbor coupling
have found good agreement with quantum methods [22],
and the agreement generally improves as the number of
interacting neighbors increases [23]. A well-known example
of a successful mean-field treatment is the theory of multiple
echoes from long-range nuclear dipole interactions in solid
3He [24].

We consider tens of thousands of spins and treat the inter-
actions at the mean-field level [25,26]. Our simulations are
performed on an nx × ny square lattice of unit length with
spin- 1

2 nuclei [Fig. 1(a)] with periodic boundary conditions
and a Lorentzian distribution of resonant frequencies with
linewidth �. We perform small �t updates on each spin in the
ensemble, with �t chosen small enough to prevent any error
from approximation of the Hamiltonian matrix exponential
during time propagation [see Supplemental Material (SM)
[27], Sec. II]. To achieve a spin echo, at t = 0 a θ -strength
Ix pulse brings all the spins out of alignment with Bz and
towards the xy plane. After a time τ = 5/�, a 2θ -strength
Iy pulse rotates them about the y axis. When θ = 90◦ this
achieves a perfect 180◦ rotation of the spins, canceling the ac-
cumulated phases from the variations in ν and forming a spin
echo at t = 2τ . We present the in-plane net magnetization of
the spin ensemble, M̄xy(t ) = M̄x(t ) + iM̄y(t ), and its Fourier
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FIG. 1. (a) Top-down view of a square lattice of nuclear spins
of size nx × ny. (b) The interaction between nuclei depends on a
characteristic strength α. By varying the strength of the first applied
pulse the expected angle θ between the spins and the constant Bz

can be modified. (c) Average planar magnetization from spin echo
simulations, in both the time and frequency domain, for a fixed θ and
varying α, and (d) vice versa.

transform (see SM, Sec. IV) in Figs. 1(c) and 1(d). We use
the notation M̄ for the global net magnetization, to distinguish
from a local magnetization M.

Applying second-order perturbation theory to the hy-
perfine interaction of strength �, here assumed to be a
diagonal tensor, between electrons and nuclei leads to an
effective spin-spin interaction bilinear in the nuclear spins
and quadratic in the hyperfine strength [28,29]. The effective
Hamiltonian for the spin-spin interaction between nuclei takes
the form

HI (i, j) ∝ �2I†
i χ (Ri − Rj )I j, (1)

where χ is the spin susceptibility of the electrons and I =
(Ix, Iy, Iz ) are the nuclear spin operators. The form of Eq. (1)
avoids the assumption of an isotropic Fermi liquid, and also
makes explicit the proportional relationship between χ and
the nuclear-nuclear coupling. Making a mean-field approxi-
mation of the interaction in Eq. (1), we keep only the diagonal
elements of χ to obtain

Hmf(i) = −νiI
z
i −

∑

d=x,y,z

αd Id
i Md

i , (2)

with νi the resonant frequency of the noninteracting spin, Md
i

the mean magnetization along the dth axis seen by a spinor at
lattice site i from the other spins, and αd the effective strength
of the hyperfine electron-mediated coupling along that spin
axis, as illustrated in Fig. 1(b). This direct relation between χ

and α is more complicated for nondiagonal hyperfine tensors,
and in this case independent experimental measurement of
the form of the hyperfine tensor is necessary before χ can
be reconstructed from our methodology of measuring α. We

also note that for short-range interactions (where M is sensi-
tive only to the nearest neighboring nuclei, for example) this
mean-field approximation is not reliable, but it should become
more accurate as the range of the interaction is increased and
the interaction averages over more nuclei. We treat the spin
operators as unitless and absorb all relevant physical constants
into ν and α, whose frequencies will be given in units of the
linewidth �. Time values will be in units of �−1.

We expect the introduction of the I2 operator to break the
even time symmetry of |M̄xy(t )| around the spin echo. As the
strength of the I2 term depends on the average magnetization
when the interaction is long range, it leads to an explicit
time dependence in the Hamiltonian. The time evolution of
the spins can be estimated by dH/dI, which acts as an ef-
fective torque on each spinor. For the noninteracting case,
dH/dI = −ν ẑ, a constant, and so if the initial distribution of
spins is frequency symmetric the resulting echo will be time
symmetric. As M(t ) acts as a nonconstant torque, it allows for
the breaking of time symmetry in the spin echo. As seen for
α = 1.2 in Fig. 1(c), the ramping strength of the interaction
as t approaches the echo time causes the postecho shoulder
to have a different shape than the pre-echo shoulder, and for
larger α values a remnant magnetization from the initial decay
causes significant time asymmetry.

We begin with the simplest isotropic infinite-range inter-
action form, M i = M̄ = ∑

j 〈I j〉 /N and αd ≡ α. This uses
the net magnetization of the entire ensemble (N spins) as the
local magnetization when determining Hmf, leaving α and the
pulse angle θ as the only unfixed parameters. The role of the
coupling strength α is investigated first in Fig. 1(c). Weak α

values (<1) show a nearly perfect spin echo in both the time
and frequency domain. As α grows, time-asymmetric echoes
occur. The interaction causes the most significant changes to
the spin evolution near the echo and shortly after the initial
pulse [free induction decay (FID)]. For α < 1.2, the only
noticeable effect on M(t ) occurs near the echo time, showing
up as a small postecho shoulder. At larger α values, the in-
teractions cause significant ringing even during the FID (see
SM). In Fig. 1(d), the effect of different pulse strengths on
the spin echo are compared. There are many reductions in
the magnetization near 10 MHz reminiscent of spectral hole
burning, so the signatures of strong electron-mediated nuclear
coupling could easily be misattributed to overpumping the
system [8].

To remove the assumption of an isotropic interaction,
we introduce the axis-dependent couplings, αz �= αx = αy ≡
αxy, motivated by anisotropy in the electronic spin suscep-
tibility: χ zz �= χ xx, χ yy. This can occur in layered materials
[30] or be caused by spontaneous electronic nematicity
[31–35]. Figure 2 investigates three different conditions for
the anistropic interaction: αxy = 0, αz = 0, and αxy �= αz. For
αxy = 0 [Fig. 2(a)] the interaction simply introduces an addi-
tional Iz term, increasing or decreasing the average resonant
frequency of the ensemble. Understanding the distribution of
spins in the absence of interactions reveals how θ shifts the
resonant frequency.

We have derived the values of M̄ in the noninteracting case
exactly in the SM’s Sec. V, but here we outline the argument
for M̄z by representing the spins as a vector of magnitude
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FIG. 2. Pulse angle (θ ) dependence of the NMR spectra for dif-
ferent aspect ratios of the effective spin-spin interaction, [αz, αxy] in
units of �. The S function [(αxy − αz )/4](cos θ + cos 3θ ) is given by
the dashed line for each aspect ratio.

1/2 (Fig. 3). The first θ pulse moves all the spins an angle
θ off the z axis, where they then precess because of Bz and
trace out a ring centered along the z axis. Assuming the time
between each pulse (τ ) is long enough to ensure that the spins
are uniformly distributed, the second 2θ pulse then rotates
the now uniform ring of spins an additional angle θ away
from the z axis. The average z component of the spins just
after the 2θ pulse is given by the average of the maximal
and minimal z-component values of the tilted ring, cos θ and
cos 3θ , respectively. The z component is unchanged under fur-
ther time evolution by Bz. Therefore M̄z during the spin echo
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FIG. 3. Distribution of nuclear spins in the absence of the spin-
spin interaction during a [θ, 2θ ] pulse sequence. After each pulse,
the updated spin distribution is given by a dark black line, and the
distribution a short time after the pulse is given by the gray outlines.
The distribution just before the 2θ pulse traces out a cone, and so the
last figure considers a rotated cone instead of a rotated arrow.

is (αz/4)(cos θ + cos 3θ ), which we denote as an S function,
and in agreement with the frequency shift observed in the
simulations. Although Fig. 3 only shows the case for θ < 90◦,
our derivation of the average M̄z value holds for all θ .

Considering instead αz = 0 [Fig. 2(c)], one can estimate
the magnitude of the in-plane magnetization at t = 2τ . A
simple geometric argument is not possible for the in-plane
magnetization, but the exact treatment yields M̄x = 0 and
M̄y = (αxy/2) sin3 θ (see SM, Sec. V). Because each spin is
acted upon by Iz from Bz, and Ix and Iy from the interaction,
behavior beyond a simple frequency shift is expected. The
multipeak behavior is most pronounced when the magnitude
of the in-plane magnetization is largest, e.g., near θ = 90◦.
There is also an S-function shift caused by the in-plane inter-
action, with magnitude (αxy/4), which is due to the weak αxy

torque applied to the z component of the spins after the 2θ

pulse (see SM, Sec. VIII). For the third case where αxy �= αz

[Fig. 2(b)] the S function’s amplitude depends on the differ-
ence of αz and αxy, and the presence of αz does not remove the
multiple peaks generated by αxy near θ = 90◦.

Inverting the argument for the results of Fig. 2, in a labora-
tory setting the pulse variation experiment could be performed
under different chosen directions for the Bz fields relative to
the sample’s crystalline axis. If the nuclei-nuclei coupling
is mostly isotropic, the resulting NMR signals should not
depend on the placement of the z axis (in the absence of any
other effects). If the coupling is stronger along one axis than
the other two, a clear S function such as that of Fig. 2(a) will
occur along a specific direction of the applied field, while if it
is weaker along one axis, an inverted S function with severe
hole-burning-like features should occur [Fig. 2(c)].

Figure 2(b) shows qualitative similarities to experimental
spectra from a superconducting phase [8]. Namely, at low
power (low θ ) the observed peaks were at a low frequency,
but as the power increases (increasing θ ) they shift to higher
frequencies and show unusual nonmonotonic behavior, sim-
ilar to the S function. Mapping power (dB) to a pulse angle
(deg) is challenging in experiment, especially when we predict
large reductions in the signal near 90◦, so more theoretical and
experimental work is necessary. The most direct approach to
investigate the origin of the spectral shifts is to repeat experi-
ments with greatly increased repetition time, as long repetition
times minimize the accumulation of heat in the sample and
would distinguish spin-spin interactions from heating effects.
The evolution of the echo shape and position as a function
of the pulse power and orientation of the applied field permit
us to reverse engineer details of this material’s electronic spin
susceptibility.

Our work also allows for the determination of the spa-
tial extent of electron-electron correlations. In real materials,
each spinor will feel a local contribution from nearby nuclei,
not a global average of the magnetization. Between different
materials and quantum spin phases, the type of radial decay
in the susceptibility and its characteristic correlation length
will vary. To investigate this variation, we define the local
magnetization Mi felt by a nucleus at site ri as the sum

Mi =
∑

j

K (ri j ) 〈I j〉, (3)
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FIG. 4. (a) Absolute value of the three magnetization kernels,
K : Gaussian (red) with ξ = 8, power (green) with p = 1.47, and
RKKY (blue) with γ = 13. (b)–(d) Time-domain spin echoes for an
isotropic Gaussian kernel with a short-, medium-, and long-range ξ

(time in units of �−1). (e) Simulated time-domain spin echoes for
the isotropic kernels with medium length scale as given in (a) for
increasing interaction strength. All three curves are identical for
αeff = 0.8. In (b)–(e), θ = 90◦ and the total effective interaction, αeff

in Eq. (4), is given in black on the right of each set of simulated spin
echo curves in units of �.

with K a radial kernel for the interaction. We study three
choices of K here. First, is a short-range Gaussian that
depends on a correlation length ξ , K (r) = e−(r/ξ )2

, motivated
by the susceptibility expected from a gapped spin excitation.
Second, is a long-range form given by a power p, K (r) =
r−p, motivated by a gapless spin excitation. Finally, we study
the Ruderman-Kittel-Kasuya-Yosida (RKKY) form expected
from spin interactions in a simple metal [28,29] which is
also dependent on a length γ , K (x) = x−4(x cos x − sin x) for
x = 2(r/γ ). In Fig. 4(a) the three functional forms for K are
plotted using parameters that yield similar length scales, for
comparison.

Spin echo results identical to those of Figs. 1 and 2 are
possible in this more realistic model if α and the length-
scale parameters ξ , p, or γ are chosen appropriately (see
SM, Sec. VI). The key parameter is the average effective
interaction

αeff ≡
∑

d=x,y,z

αd

3

∑

i j

K (ri j ), (4)

which is an integral of the interaction over the lattice and
averaged over the three spin-spin spatial dimensions. We find
that a local interaction produces similar echoes to that of the
global magnetization studied earlier, as long as the α used in
the global case is similar to αeff of the local one and the range
of the interaction is sufficiently long. In Figs. 4(b)–4(d), sim-
ulations with an isotropic (αd = α) Gaussian functional for
three values of ξ are shown. At the small value of ξ = 2, the
spin echo acts similarly to the infinite-range model for weak

αeff. But as the interaction increases, the coupling to neigh-
boring spins becomes so strong that extreme variations in
the local effective magnetization occur throughout the lattice,
destroying the echo. For intermediate values (ξ = 8) similar
behavior is observed, but now the critical αeff for complete
destruction of an echo is larger. When the correlation length
is much larger than the lattice parameter (ξ = 32), the echo
is identical to the results of the infinite-range coupling even
for large αeff. Therefore, the effective strength of the coupling
(αeff) can be determined if an echo occurs, and the higher its
value the longer range the electronic spin-spin correlations
must be. To estimate the critical minimal value of ξ for a
given αeff in a three-dimensional lattice, we take ξ 2/3 ≈ 4, 10
lattice lengths, for the intermediate- and long-range values
respectively.

Echoes caused by interactions with similar αeff but differ-
ent isotropic radial forms are shown in Fig. 4(e). We see that
although all three curves show similar qualitative trends, there
are small details that distinguish them. For example, in the
pre-echo shoulder (t = 7.5) the RKKY form always has the
highest M̄xy(t ) value, followed by the Gaussian, and then the
power form. Similarly, in the postecho shoulder (t = 12.5),
the power form yields the largest M̄xy(t ) and the Gaussian
form the smallest. At the largest αeff value in Fig. 4(e), these
trends no longer hold because the echoes have disappeared
for the Gaussian and RKKY forms. The RKKY form is an
oscillating power-law decay, with its nodes partially canceling
long-range contributions and making it act as a short-range
interaction in our model. The power law balances local versus
average magnetization and prevents a complete breakdown of
the spin echo phenomena.

Careful evaluation of NMR responses provides valuable
insight into systems with long-range electronic spin correla-
tions. We demonstrate that pulse-induced spectral line shifts
could be caused not only by external effects quenching an
electronic phase, but also by the electronic phase itself. There
are two important conditions that must be satisfied by the
electronic spin susceptibility for this effect to occur. First, the
integral of the electron-mediated nuclear interaction strength
(aeff) must be similar to or larger than the material’s natural
linewidth. Second, this interaction must be relatively strong
over a large number of nuclei, such that the spin-spin interac-
tions lead to an effective spin memory in the system instead of
the T2 decay that occurs when the interaction is only among
nearest neighbors. Our work encourages careful considera-
tion of any NMR result in a strongly correlated system, be
it a conventional solid or an artificial atomic lattice. Clear
signatures of nematic (anisotropic) ordering can be revealed
by changing the pulse strength and orientation of the applied
field. Moreover, the methodology developed here gives insight
into the radial form and range of electronic correlations. We
hope that extensions of this work can ultimately lead to the
ability to reverse engineer the full electronic susceptibility
from simple NMR spectral measurements.

We thank Mladen Horvatić for helpful comments. This
work was supported by the National Science Foundation
under Grant No. OIA-1921199. The calculations were con-
ducted using computational resources and services at the
Center for Computation and Visualization, Brown University.
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Impurity-Induced Local Magnetism and Density of States in
the Superconducting State of YBa2Cu3O7, Phys. Rev. Lett. 96,
127005 (2006).

[10] J. A. Sobota, D. Tanasković, and V. Dobrosavljević, RKKY
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