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Quantum strongly correlated matter exhibits properties which are not easily explainable in the conventional
framework of Fermi liquids. Universal effective field theory tools are applicable in these cases regardless of
the microscopic details of the quantum system, since they are based on symmetries. It is necessary, however,
to construct these effective tools in full generality, avoiding restrictions coming from particular microscopic
descriptions which may inadequately constrain the coefficients that enter in the effective theory. In this work we
demonstrate with explicit examples how the hydrodynamic coefficients, which have been recently reinstated in
the effective theory of pinned charge density waves (CDWs), can affect the phenomenology of the thermoelectric
transport in strongly correlated quantum matter. Our examples, based on two classes of holographic models with
pinned CDW, have microscopics which are conceptually different from Fermi liquids. Therefore, the above
transport coefficients are nonzero, contrary to the conventional approach. We show how these coefficients allow
one to take into account the change of sign of the Seebeck coefficient and the low resistivity of the CDW phase
of the cuprate high temperature superconductors, without referring to the effects of Fermi surface reconstruction.
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I. INTRODUCTION

The transport properties of the charge density wave (CDW)
ordered states of strongly correlated quantum matter, in par-
ticular in cuprate superconductors, attract a great deal of
attention. The CDW plays an important role in the phase
diagram of the cuprates: it appears as an order parameter in
a subregion across the pseudogap and superconductor phases,
as well as a fluctuation at higher temperatures in the strange
metal phase [1]. It can be demonstrated [2] that the onset
of CDW leaves an imprint on the thermopower (or Seebeck
coefficient), which starts decreasing at the CDW critical tem-
perature TCDW and reaches negative values at low T ’s. This
feature is observed in various compounds [3–8] and can be
considered as a universal signature of CDW. From the point
of view of the Fermi liquid theory, this behavior may be un-
derstood as a reconstruction of the Fermi surface [9], yet to be
detected. However, the very applicability of the Fermi liquid
to cuprates is debatable [10–12] and the need of alternative
approaches to the physics of thermopower in these systems
persists [13,14].

Irrespective of the microscopic description of a particular
system, one can construct an effective theory (EFT) of its
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low energy properties by symmetry considerations [15]. For
exact global symmetries, this procedure leads to hydrody-
namics. If a global symmetry is spontaneously broken, the
corresponding Goldstone mode appears in the spectrum and
must be added to the hydrodynamic degrees of freedom. If the
spontaneously broken symmetry is only approximate (there is
a small explicit breaking source), the hydrodynamic descrip-
tion of massive pseudo-Goldstone mode can be developed
[16–19]. The phases of matter with pinned CDW fall in the
latter class: the spatial structure of CDW breaks translation
symmetry spontaneously, while pinning provides an explicit
symmetry breaking source.

The effective theory of broken translations has long been
appreciated as a tool to address the dynamics of the CDW
phases in quantum systems [20]. Recently, it has experienced
a renaissance motivated in part by the appearance of a class of
physical models described by the holographic duality [21,22].
These models, on one hand, can exhibit the CDW phases
[23–26] (see [27] for recent review) and therefore must be
describable by a symmetry based EFT. On the other hand, they
defy the principles of gapped Fermi liquid used in the earlier
EFT constructions to constrain certain hydrodynamic coeffi-
cients. Therefore, the need to relax some of these constraints
has been identified recently, leading to a new generation of
EFTs, with an enlarged set of nonzero hydrodynamic coeffi-
cients: the Galilean symmetry constraints have been relaxed
in [16–18], the effects of pinning where included in [16–19],
and the effects of background strain have been addressed in
[28,29].

Here we study explicit examples of translational symmetry
breaking in holographic models. We evaluate all AC and DC
conductivities and match the results with the EFT description

2469-9950/2022/106(4)/L041118(8) L041118-1 Published by the American Physical Society

https://orcid.org/0000-0001-6000-1302
https://orcid.org/0000-0001-8789-8703
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.L041118&domain=pdf&date_stamp=2022-07-29
https://doi.org/10.1103/PhysRevB.106.L041118
https://creativecommons.org/licenses/by/4.0/
https://www.kb.se/samverkan-och-utveckling/oppen-tillgang-och-bibsamkonsortiet/bibsamkonsortiet.html


TOMAS ANDRADE AND ALEXANDER KRIKUN PHYSICAL REVIEW B 106, L041118 (2022)

of [18,19,29]. We show that the transport coefficients, namely,
the incoherent conductivity and Goldstone mode diffusivity,
are nonzero in the considered examples and lead to alternative
phenomenology: the change of sign of the Seebeck coefficient
discussed above, and the absence of an exponential gap in the
resistivity of the symmetry broken state. The latter is also a
feature of the CDW phase of cuprates [30–33].

In the following section we review the hydrodynamic EFT
of pinned CDWs. Then, we construct the holographic dual
to a quantum system with CDW order and show that its
AC conductivity, as expected, is very well described by the
EFT, albeit with parameters which do not follow the conven-
tional Fermi liquid logic. We obtain the DC conductivities
and demonstrate some phenomenological features, which may
be studied experimentally. The extra details are summarized
in the Supplemental Material [34] (see also, Refs. [35,36]
therein).

II. EFFECTIVE THEORY OF CHARGE DENSITY WAVES

In a hydrodynamic approach, the effective theory of pinned
CDW can be built using exclusively the symmetry con-
siderations [16,17,19,28,29,37], and, importantly, is valid
irrespective of whether or not the quantum system admits a
perturbative treatment. Thus, EFT forms a convenient basis
for the analysis of various experimental measurements, repre-
senting all data in terms of a limited number of hydrodynamic
coefficients.

We will rely on the effective theory description of CDW
developed in [28,29,38]. Let us restrict the model of [29] to
a space-time with two spatial dimensions (x, y), with a unidi-
rectional spontaneous spatial structure: CDW. Introducing an
intrinsic coordinate φ along the CDW, one can characterize
its embedding in space by a single “crystal field” φ(x, y).
The ground state (a homogeneous CDW with no defects)
corresponds to φ0(x, y) = αx.1 Note that the translation of the
CDW as a whole, the sliding mode, is encoded in the shifts
of φ: φ → φ + δφ. Therefore one readily identifies φ as a
Goldstone field.

We restrict our attention to small low-frequency, long-
wavelength fluctuations of the CDW structure φ = φ0 +
αδφ(t, x), the local chemical potential μ = μ0 + δμ(t, x) and
temperature T = T0 + δT (t, x), and local velocity field uμ =
{1, 0, 0} + δuμ(t, x). To compute the two-point functions rele-
vant for transport, we consider external sources for the current
and energy-momentum tensor: the electric field δ∂t Ax(t, x)
and the background metric perturbation δgtx(t, x). Moreover,
we take into account the effect of the crystal lattice, which
simultaneously breaks translations explicitly, introducing a
finite momentum dissipation �, and pins the CDW, providing
a mass m2

φ to the Goldstone mode. As long as � and m2
φ are

small, this “weak pinning” effect can be treated as a small
correction to the hydrodynamic conservation laws. The pin-
ning leads to a finite lifetime of the Goldstone, parametrized
by the phase relaxation term � [16–19,37–39]. The full set of

1α characterizes the “wavelength” of the CDW; however, it is
arbitrary given the reparametrization freedom of φ.

hydrodynamic constitutive relations, resulting from the frame-
work of [29], is listed in Supplemental Material [34] Sec. A.
Here we assume Lorentz symmetry [40], and the expression
for the electric current and the Goldstone configuration equa-
tion (Josephson relation) read2

Jx = ρδux + γ (∂tδφ − δux )−σq

(
T0∂x

μ

T
+ ∂tδAx

)
, (1)

∂tδφ − δux − B + G

σφ

∂2
x δφ − γ ′

σφ

(
T0∂x

μ

T
+ ∂tδAx

)

= −�δφ. (2)

In addition, we quote the stress-energy and current conser-
vation laws, modified by the explicit sources and symmetry
breaking terms:

∇μT μ
t = 0, ∇μJμ = 0, (3)

∇μT μ
x = −ρ∂tδAx + �Ttx − Gm2

φδφ. (4)

Here ∇μ is a covariant derivative constructed with the per-
turbed metric, {P, ρ, s} are thermodynamic pressure, charge
density, and entropy in the ground state, {B, G} are bulk and
shear elastic moduli of the spontaneous structure, {ζ , η} are
bulk and shear viscosities, while {σq, γ , γ ′, σφ} are four more
hydrodynamic coefficients which we discuss now in more
detail.

The σq and σ−1
φ coefficients are usually set to zero in

the standard treatment of CDW in gapped quantum systems
[20]. If we examine the Josephson relation in the absence
of perturbative sources and pinning, we see that at any fi-
nite momentum k the Goldstone mode decays with the rate
σ−1

φ (B + G)k2, therefore σ−1
φ controls the Goldstone diffu-

sivity [26,42]. However, in a gapped quantum system, the
Goldstone mode cannot decay even at finite momentum,
unless the momentum is large enough to cross the gap. There-
fore, at zero temperature one sets σ−1

φ = 0 and all terms
except δux drop out from (2). On the other hand, at finite
temperature one expects σ−1

φ to be exponentially suppressed
by the scale of the gap.

The other unusual coefficient is σq. This is allowed from
the EFT perspective, but it is absent in systems where
transport is mediated by quasiparticles and the current is con-
strained by Galilean symmetry Jx = ρδux. This coefficient is
related to “incoherent conductivity,” which has been discussed
extensively in connection to holographic models [23–26,43–
46] and plays a crucial role here.

We can plug in the constitutive relations into the conserva-
tion laws and solve the system of differential equations with
respect to hydrodynamic variables {δux, δμ, δT, δφ} in the
presence of external sources {δAx, δgtx}. Inserting the so-
lutions back into the constitutive relations, we obtain the
expectation values for various operators in terms of pertur-
bative sources [40]. This allows us to evaluate the two-point
functions 〈JxJx〉, 〈JxT tx〉, 〈T txJx〉, and 〈T txT tx〉. As one can

2In [29,41] the extra thermodynamic quantity “lattice pressure”
plays a significant role in the model, but it is irrelevant here (see
Supplemental Material [34] Sec. A).
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show from locality of the hydrodynamic equations [18], pos-
itivity of entropy production [19], or the Onsager relation
between 〈JxT tx〉 and 〈T txJx〉 (see Supplemental Material [34]
Sec. A), the coefficients are related as [26,37,38,42,47–51]

γ ′ = −γ , � = σ−1
φ m2

φG. (5)

Recalling the definition of the heat current in the presence
of a chemical potential [52], Qx = Jx + μT tx, we arrive at
the full matrix of AC thermoelectric conductivities [53] (κ̄ is
thermal conductivity at zero bias),

(
Jx

Qx

)
=

(
σ T α

T ᾱ T κ̄

)(
Ex

− ∂xT
T

)
. (6)

At the zero wavelength limit

σ (ω) = σ0 + ρ̃2(� − iω) − γ̃ 2ω2
0(� − iω) − 2ρ̃γ̃ ω2

0

μ2
0χππ

(
(� − iω)(� − iω) + ω2

0

) ,

T

μ0
α(ω) = − σ0

+ ρ̃ s̃(�− iω) + γ̃ 2ω2
0(� − iω) − (s̃ − ρ̃ )γ̃ ω2

0

μ2
0χππ

(
(� − iω)(� − iω) + ω2

0

) ,

T

μ2
0

κ̄ (ω) = σ0 + s̃2(� − iω) − γ̃ 2ω2
0(� − iω) + 2s̃γ̃ ω2

0

μ2
0χππ

(
(� − iω)(� − iω) + ω2

0

) ,

(7)

where

σ0 = σq + γ 2

σφ

, ρ̃ = μ0ρ, s̃ = T0s, χππ = ρ̃ + s̃,

γ̃ = μ0χππγ /σφ, ω2
0 = Gm2

φ/χππ . (8)

In the ordered state far from Tc (ω0 � �,�) these expressions
correspond to the peak in the real part of the spectra, located
at finite “pinning frequency” ω0 with width (� + �). This is
a manifestation of the gapped coherent sliding mode. The DC
conductivities display a mixture of coherent and incoherent
contributions, which can be recast as

σ = σq + σ−1
φ

(ρ − γ )2

1 + �χππ

σφ

,
κ̄T

μ2
= σq + σ−1

φ

(
sT
μ

+ γ
)2

1 + �χππ

σφ

,

αT

μ
= −σq + σ−1

φ

(ρ − γ )
(

sT
μ

+ γ
)

1 + �χππ

σφ

. (9)

These expressions represent the main outcome of the EFT
[18,28,37] which we are going to study. Note that both terms
are usually negligible in the conventional gapped CDW: σq is
zero because of Galilean invariance, while σ−1

φ is exponen-
tially suppressed due to a gap in the spectrum.

In presence of finite σq and σ−1
φ , however, the DC conduc-

tivities depart from the conventional picture. First, the electric
conductivity is finite even in the broken phase, and second, the
sign of the thermopower α is a result of the interplay between
σq and σ−1

φ terms. In what follows we explore how these
mechanisms come about in non-Fermi liquid, holographic
models.

III. HOLOGRAPHIC MODEL OF GAPLESS CDW

The essence of holographic modeling is the correspon-
dence between strongly correlated quantum systems and
classical black holes in auxiliary space-times, which are con-
structed according to a rigorous set of rules: the “holographic
dictionary” [21,22,52,53]. In this paradigm, the quantum sys-
tem at finite temperature T and chemical potential μ in a
2+1 dimensional space-time corresponds to a black hole in
a 3+1 dimensional curved space-time, whose horizon radius
and charge are set by T and μ. The crystal lattice can be
introduced via periodic modulation of the chemical poten-
tial [54–60]: μ(x) = μ0[1 + A cos(kx)].3 We will consider a
model with small A = 0.04, describing the weakly pinned
CDW. The spontaneous structure formation is realized as an
instability of the black hole against formation of the spa-
tially modulated “hair” [61–63]. The interplay between the
explicit and spontaneous translation symmetry breaking has
been studied extensively in this setup [39,64–66] (note also
other approaches [26,27,42,47–49,67–76]; see Suplementary
Material Sec. D). The action of the model reads

S =
∫

d4x
√−g

(
R − 2� − 1

2
(∂ψ )2 − τ (ψ )

4
F 2 − W (ψ )

)

− 1

2

∫
θ (ψ )F ∧ F. (10)

where F = dA is the field strength of the U (1) gauge field
dual to a U (1) global charge, and ψ is an axion field in the
bulk coupled to the θ term, which drives a CDW instability.
R and � are the Ricci curvature and negative cosmological
constant, which govern the structure of asymptotically anti–
de Sitter (AdS) space in the bulk. The qualitative features we
reveal depend only mildly on the precise form of the potentials

τ (ψ ) = 1 + · · · , W (ψ ) = −ψ2 + · · · ,

θ (ψ ) = c1

2
√

6
ψ + · · · ; (11)

for more details see Supplemental Material [34] Sec. B.
The holographic dictionary identifies the asymptotics of

the gauge field profile near the AdS boundary (located at
radial coordinate z → 0) with the chemical potential and

U (1) charge density: At (x, z)|z→0 = μ(x)z + ρ(x)z2. Given
the classical solution to the Einstein equations following from
(10) with appropriate boundary conditions set by μ(x) and T ,
one can compute the charge density profile ρ(x) and observe
formation of spontaneous CDWs below a certain critical tem-
perature T = T0(c1). As the temperature is lowered, the order
parameter—the amplitude of the charge density modulation—
grows and the effective theory of pinned CDWs is applicable.
One can achieve a similar behavior by tuning the coupling
constant c1 at fixed temperature.

To evaluate the AC conductivities, we introduce perturba-
tive sources for the electric current and stress-energy tensor,
encoded in the near-boundary asymptotes of the gauge field
Ax(z) and metric gtx(z). After solving the equations of motion,

3This unidirectional crystal model allows us to simplify the treat-
ment, preserving all the necessary physics.
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FIG. 1. The pinned peak in AC conductivities. The filled dots and
solid lines show the AC data for the conductivities in the holographic
model with c1 = 16 and the fits with (7). The empty dots and dashed
lines show the same with c1 = 26. Data were taken for the 2/1
commensurate states with T/μ = 0.1, k/μ ≈ 2.1, A = 0.04.

we read off the subleading components and take the variations
with respect to the sources. We thus obtain the two-point func-
tions 〈JxJx〉, 〈JxT tx〉, 〈T txJx〉, and 〈T txT tx〉 from which we
read all AC thermoelectric conductivities (6). The numerical
calculations are demanding, especially at low temperatures.
To circumvent this, we fix the temperature and tune the cou-
pling c1 to control the order parameter; see Supplemental
Material [34] Sec. B for details.

In the weak pinning regime (A = 0.04), the results have
precisely the shape predicted by the effective theory; see
Fig. 1: the peak located at finite frequency ω0. As we dis-
cuss in Supplemental Material [34] Sec. C, we perform a
set of cross-checks of the model expressions (1). First, we
obtain the same values of hydrodynamic coefficients when
independently fitting σ, α, and κ̄ . Moreover, we extract ther-
modynamic data from the AC linear response fits, which agree
with the data obtained as the operator expectation values in the
ground state of the model. This check also shows that the extra
thermodynamic quantities, discussed in [19,28,28,41], such as
the lattice pressure, can be safely neglected. Finally, we get
excellent agreement between the DC conductivities, obtained
by the expressions (9) using the values of the hydrodynamic
coefficients from the AC fits, and the DC transport proper-
ties evaluated using the near horizon data in the holographic

FIG. 3. Dependence of the DC thermoelectric conductivities on
the pinning scale A. The data were taken for the 2/1 commensurate
states with k/μ = 2, A = 0.04.

ground state, as we discuss in a moment. These checks support
the statement that the effective theory of pinned CDW from
Sec. II describes well the holographic results.

IV. DC TRANSPORT

The DC transport of the holographic model can be studied
with greater precision than the AC conductivities since it
can be extracted from near horizon data of the background
geometry [25,58,77–81].

The results for temperature series of solutions with differ-
ent c1 couplings are shown in Fig. 2. One can recognize the
unconventional behavior of the electric conductivity, which
decreases at small temperature as a certain power law, instead
of the activated exponential behavior [∼ exp(−�CDW /T )]
expected for the gapped CDW. Moreover the thermopower
changes sign at a certain temperature, which depends on the
coupling c1. While it is unusual in the conventional treatment,
this behavior can be well incorporated in the generalized EFT
framework, Sec. II. Note also that, as we show in Fig. 3, the
DC conductivities are insensitive to the scale of the explicit
symmetry breaking (crystal lattice or impurities ), which sup-
ports our treatment of � as a small parameter in (9).

In the previous section we established the validity of EFT
as we vary the order parameter dialing c1. Assuming that EFT
continues to be applicable in the regimes where the order
grows due to the decrease of temperature, we can use (9) and
extract all the hydrodynamic coefficients, having the DC con-
ductivities at hand (in the weak pinning regime). This leads to

FIG. 2. The evolution DC thermoelectric conductivities at small temperatures. The holographic model with different values of the coupling
c1 is considered. Note that thermopower changes sign at some coupling-dependent point. Data were taken for the 2/1 commensurate states
with k/μ = 2, A = 0.04.
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FIG. 4. The behavior of effective theory parameters at low temperatures. Plots have log-log scales. Incoherent conductivity σq and
Goldstone diffusivity behave as certain power laws, but the former does not depend on the coupling c1. γ changes sign at some T/μ ≈ 0.02
for all c1. Note that this is not related to the change of sign in α. γμ/sT does not quite saturate at 1, as suggested in [26,42]. Data are the as in
Fig. 3.

the results shown in Fig. 4. We see that the EFT parameters σq

and σ−1
φ are indeed nonzero and behave as power laws rather

then as gapped exponentials.
The relative contributions of the various terms in (9) to the

DC transport are shown in Fig. 5. Interestingly, we see that the
electric conductivity is dominated by the σ−1

φ ρ2 term, while
the heat conductivity (κ̄ and, as we checked, κ = κ̄ − α2/σ )
is controlled by σq. This means that the behaviors of the
electric and heat conductivities are not related to each other at
the level of EFT, and the Wiedemann–Franz law (κ/σ ∼ T )
may not arise in materials with these “gapless pinned CDWs.”
Looking at the thermopower, we see that the two terms in (9)
are of the same order and approximately cancel each other.
This cancellation is the reason for the sign change in α, as
seen on Fig. 2. Therefore, the exact temperature where the
sign changes depends on subleading contributions, and does
not point to some qualitative change, as it would for Fermi
surface reconstruction.

The phenomenological features which we observe here are
not specific to a particular holographic model. As we show in
Supplemental Material [34] Sec. D, we obtain similar results
in a different setup based on a helical lattice. The universal
feature, which appears in both cases, is the absence of expo-
nential suppression of either σq or σ−1

φ , leading to a nontrivial
interplay between the terms in (9). The remarkable cancella-
tion of terms in α as well as the exchange of dominance of
the σq and σ−1

φ terms in σ and κ̄ are also persistent features
in our data. This might point out some universal relation be-
tween γ σ−1

φ and σq as suggested in [26,42]; see Supplemental
Material [34] Sec. E for the further discussion on this.

V. CONCLUSION

In this Letter we demonstrate how the parameters
in the effective theory of pinned charge density waves
[16–19,28,29,38], which are absent in gapped quantum sys-
tems, can affect the thermoelectric transport when they are
nonzero. The absence of a clean gap in the spectrum can be a
result of the quantum continuum being present in the system.
The effects of such a continuum spectrum have been studied in
relation to the physics of plasmons [82], the dynamics of pat-
tern formation [39], and fermion spectral functions [83–85].

In explicit examples constructed by means of holographic
duality, we show that the “gapless” pinned charge density
waves demonstrate nonvanishing conductivity in the pinned
CDW phase, change of sign in the thermopower (unrelated
to the reconstruction of the Fermi surface), the conceptual
absence of the Wiedemann-Franz law, and low sensitivity of
the transport properties to the concentration of impurities. All
these phenomenological features are observed in the under-
doped phases of cuprate high temperature superconductors,
where charge density waves are present.

We hope that these examples will encourage the use of the
improved EFT in the analysis of the transport experiments
in CDW cuprates, which in turn could clarify their physical
nature and, perhaps, would unveil the properties of the under-
lying quantum criticality.

We also point out that the phenomenology of the DC
transport, described above, being a consequence of the pinned
CDW behavior, predicts the specific shapes of the spectra of
AC conductivities (7), which makes the experiments on the
optical spectroscopy particularly important.

FIG. 5. The contributions to DC conductivities from various terms in (9). At low T electric conductivity is dominated by the σ−1
φ term,

heat conductivity is dominated by the σq term, while thermopower is a result of a fine balance between them. Red lines assume γ = 0 and help
to one appreciate the role of γ . Data are as in Fig. 3 for c1 = 40.
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It is worth mentioning that, when deriving the expressions
(9) and (7) and focusing on the qualitative effects, we omitted
other hydrodynamic coefficients, pointed out in [19], which
play a subleading role in our discussion. One should keep this
in mind when performing precision tests of (9) and (7).

Finally, we point out that the considered EFT framework is
based on the Lorentz symmetry and therefore the “incoherent
contributions” ∼σq in all the conductivities (9) are related. In
the absence of Lorentz symmetry one allows instead three in-
dependent coefficients: σq, αq, and κq. A nonzero negative αq

of order σq could lead to a similar cancellation phenomenon
in thermopower.
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