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Three-dimensional quasiquantized Hall insulator phase in SrSi2
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In insulators, the longitudinal resistivity becomes infinitely large at zero temperature. For classical insu-
lators, the Hall conductivity becomes zero at the same time. However, there are special systems, such as
two-dimensional quantum Hall insulators, in which a more complex scenario is observed at high magnetic
fields. Here, we report experimental evidence for a quasiquantized Hall insulator in the quantum limit of the
three-dimensional compound SrSi2. Our measurements reveal a magnetic-field range, in which the longitudinal
resistivity diverges with decreasing temperature, while the Hall conductivity approaches a quasiquantized
value that is given only by the conductance quantum and the Fermi wave vector in the field direction. The
quasiquantized Hall insulator appears in a magnetic field induced insulating ground state of three-dimensional
materials and is deeply rooted in quantum Hall physics.

DOI: 10.1103/PhysRevB.106.L041113

Introduction. The quantum Hall insulator (QHI) is one of
the ground states in two-dimensional (2D) electron systems
exposed to a strong magnetic field B. It is characterized by
a diverging longitudinal resistivity (ρxx → ∞) as T → 0 and
a finite Hall conductivity (σxy) that approaches the value e2/h
containing only fundamental constants: the elementary charge
e and the Planck’s constant h [1–7]. This state differs funda-
mentally from a classical insulator for which ρxx diverges and
σxy vanishes at zero temperature [8–12].

The QHI state usually occurs in between two other ground
states of 2D systems. The first is the quantum Hall liquid
(QHL) state [13,14], which is characterized by a vanishing
ρxx and a quantized σxy = ve2/h, where v is a rational num-
ber (ρxx → 0 and σxy → ve2/h as T → 0). The second is
the ordinary Hall insulator (HI) state [15], which is charac-
terized by a diverging ρxx and σxy ≈ en/B where n is the
density of electrons in zero magnetic field [ρxx(B) → ∞ and
σxy(B) → en/B as T → 0]. By changing the applied magnetic
field and/or disorder, it is possible to drive transitions between
the different ground states and to thereby study the quantum
critical phenomena associated with them [1,8].

In a three-dimensional (3D) electron system, σxy is never
truly quantized [16–18]. Recently, however, a 3D relative of
the QHL was reported as the quasiquantized Hall effect in
the Dirac semimetals ZrTe5 [19,20] and HfTe5 [21,22], and in
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doped InAs [23]. The characteristic of the 3D quasiquantized
Hall effect, i.e., the 3D quasiquantized Hall liquid (QQHL),
in the quantum limit (where only the lowest Landau band is
occupied) is that σxy is given by only the conductance quantum
e2/h, scaled by the Fermi wave vector kF of electrons along
B [σxy(B) → (e2/h)kF/π as T → 0], while ρxx approaches
a finite, nonquantized value for T → 0. The value of ρxx

depends on sample details, such as the residual resistivity at
low temperatures. Importantly, the QHL and QQHL have a
common origin: Both phases are directly related to the Berry
curvature of the electron states in their respective dimension
[16]. This naturally raises the question of whether relatives of
the insulating ground states associated with the quantum Hall
regime in two dimensions might also occur in 3D systems.

In fact, a B-driven transition between a QQHL and 3D
HI has recently been observed deep in the quantum limit of
ZrTe5 [19,20] and HfTe5 [21,22], and in doped InAs [23].
However, the transition from the QQHL to the 3D HI through
a quasiquantized Hall insulator (QQHI) phase [ ρxx(B) → ∞
and σxy(B) → (e2/h)kF,z/π as T → 0 ], i.e., the 3D equiv-
alent of the 2D QHI, has rarely been observed. Here, we
report the QQHI state in a 3D compound SrSi2, containing
near-spherical Fermi surfaces.

SrSi2 crystallizes in the chiral space group P4132 (No. 213)
with a helical arrangement of Si atoms along the (111) direc-
tion [Fig. 1(a)]. Originally, SrSi2 was predicted to be a Weyl
semimetal with a higher Chern number of ±2 [24,25]. Nev-
ertheless, recent angle-resolved photoemission spectroscopy
(ARPES) measurements reveal that SrSi2 exhibits only trivial
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FIG. 1. (a) Crystal structure of SrSi2 with chiral space group P4132 (No. 213). (b) Trivial band structure of SrSi2 in agreement with a recent
ARPES study [26]. (c) Six pairs of spin-split hole Fermi-surface pockets in the BZ along ±kx , ±ky, and ±kz. (d) Constant energy surface at
EF and kz = 0 measured by ARPES acquired with a photon energy hν = 342 eV. Cross sections of a set of four near-spherical Fermi-surface
pockets lying in the kx-ky plane are clearly visible. The corresponding plane is highlighted in green in (c). (e) Temperature-dependent resistivity
of SrSi2 with current passed along [100] in the absence of a magnetic field. (f) Temperature-dependent charge-carrier concentration (n) and
mobility (μ) of SrSi2 estimated using the low magnetic field slope of ρyx (B).

pockets with a parabolic dispersion at the Fermi energy EF

[26]. Ab init io calculations using density-functional theory
[27–29] of the band structure [Fig. 1(b)] show a global band
gap of ∼100 meV, making SrSi2 a semiconductor. However,
EF is located slightly below the tip of the valence band
which results in small Fermi pockets in the first Brillouin
zone (BZ); see Fig. 1(c). The lack of inversion symmetry
in SrSi2 leads to six spin-split pairs of nearly spherical hole
pockets distributed in the momentum space directions ±kx,
±ky, and ±kz along the high-symmetry lines �−X . The larger
Fermi-surface pocket (red) is labeled β, whereas its spin-split
counterpart, the smaller Fermi-surface (FS) pocket (blue) is
labeled α.

Experiment and analysis. All single-crystalline samples
used in our study were grown via the optical floating zone
technique (see Supplemental Material [30]). Detailed single-
crystal diffraction experiments and analysis were performed
on the grown crystals. The crystal structure is found to
be P4132 (No. 213) chiral type, with Flack parameters
∼0.016(12), confirming a single-handed chiral domain struc-
ture in the grown crystals. Figure 1(d) shows an ARPES
(also see Supplemental Material [30]) image of the kx-ky

plane taken from one of these samples. Here, the ARPES
experiments on the SrSi2 single crystals were conducted using
soft x-ray ARPES (SXARPES) at the ADRESS beamline
of the Swiss Light Source using a SPECS analyzer [31,32].
Although the spin splitting between the α and β pockets is
beyond the experimental resolution, the observed projection
of four Fermi-surface pockets located at ±kx and ±ky is con-
sistent with the band-structure calculations.

For the electrical-transport experiments, several
millimeter-size rectangular SrSi2 single-crystalline bars
were prepared such that the edges of the bars were aligned

along the crystallographic directions (crystals containing
{100} planes or crystals with their length along [110], width
along [111], and height along [–112], etc.), that correspond
to the indexes x, y, and z of the transport coefficients. On
bars aligned in this way, we measured ρxx and ρyx with a
standard four-probe low-frequency lock-in technique in DC
and pulsed magnetic fields at various T (see Supplemental
Material [30]). At B = 0, ρxx and n exhibit the typical
behavior of an intrinsically doped semiconductor [Figs. 1(e)
and 1(f)] [33]. ρxx increases with increasing T , while n
remains nearly constant up to 75 K, indicating a metallic
regime. Around 75 K, however, thermal activation across the
band gap sets in, causing the charge-carrier concentration n to
increase with increasing T and ρxx to decrease. dρyx(B)/dB
is positive below 75 K, indicating hole-dominated transport
in the metallic temperature regime, which agrees with our
band-structure calculations and ARPES experiments. An
important detail that distinguishes our study from past
experiments on the quasiquantized 3D Hall regime is that
our samples have a much lower charge-carrier mobility μ

[Fig. 1(f)]. At 2 K, we estimate μ = 1.21 × 103cm2 V−1 s−1,
which is approximately two orders of magnitude lower than
the charge-carrier mobility for ZrTe5 [19,20] and HfTe5

[21,22], and in doped InAs [23]. This is a key difference
because in 2D systems, the transition to the QHI is tied
to samples with particularly low μ, in which incoherent
scattering dominates [8].

To characterize the FS morphology of our samples, we
measured Shubnikov–de Haas (SdH) oscillations [34] with re-
spect to the main crystal axes at 2 K [Fig. 2(a)]. We found two
fundamental SdH frequencies [Fig. 2(b)] that do not change
for different field alignments within the experimental resolu-
tion [Figs. 2(c) and 2(d)], which is consistent with two 3D
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FIG. 2. (a) Shubnikov–de Haas (SdH) oscillations at 2 K with a
magnetic field applied along important cubic crystallographic direc-
tions: [100], [110], and [111], which exhibit nearly identical quantum
oscillations. (b) Fast Fourier transform (FFT) amplitudes for SrSi2

determined from SdH oscillations for B along [100]. The inset shows
the near-spherical Fermi-surface pockets predicted by the calcula-
tions. (c,d) Angle-dependent SdH oscillations with nearly identical
oscillation frequencies that are in agreement with the nearly spherical
Fermi-surface pockets in SrSi2 are revealed.

spherical Fermi-surface pockets of different sizes. Based on
the ab init io band-structure calculations, we assigned the ob-
tained frequencies fα = 5.3 T and fβ = 12.8 T to the α and β

pocket, respectively. The corresponding zero-field Fermi wave
vectors kF,0,i (i = α, β ) were then estimated using the Onsager
relation kF,0,i = √

fi4πe/h, yielding kF,0,α = 0.013 Å–1 and
kF,0,b = 0.020 Å–1. Further details of the band-structure analy-
sis can be found in Fig. S2 in the Supplemental Material [30].
We want to explicitly point out two results of this analysis:
The quantum limits for the α and β pockets in our SrSi2 sam-
ples have already been reached for fields of BQL,α ≈ 5.3 T and
BQL,β ≈ 12.8 T, respectively, and the α pockets are already
completely gapped out above BG,α ≈ 11.4 T (see Supplemen-
tal Material [30]). Thus, above BQL,β , all charge carriers are in
the lowest Landau band of the β pockets.

We now identify the different phases in SrSi2 above BQL,β

at low temperatures. More precisely, we measured in the con-
figuration of the magnetic field aligned along the z axis (Bz ).
Experimental identification of an insulating or metallic phase
is based on extrapolation of the measured ρxx in B and at a
finite temperature to T = 0. However, if ρxx increases (expo-
nentially) with decreasing T , the state is usually considered to
be an insulator. Conversely, if ρxx decreases with decreasing
T , the state is regarded as a metal. In a 2D electron system, the
transition between an insulating phase and a metallic phase in
the quantum Hall regime can be characterized by a critical
magnetic-field value Bc, for which ρxx is T independent and
where the derivative of the T dependence changes sign on
each side of the transition [35]. In experiments, Bc is usually
extracted from the intersection of ρxx(B) curves measured at

various values of T [1]. The transition between the QQHL and
HI in the 3D quasiquantized Hall regime has been character-
ized in a similar way in ZrTe5 [19].

Following this procedure, we plot ρxx(B) and σxy(B) of our
SrSi2 sample for various T in Figs. 3(a) and 3(b), respec-
tively. Starting from low fields, we find that SrSi2 enters the
metallic 3D QQHL phase [16] just above BQL,α . In this phase,
ρxx decreases monotonically with decreasing T [Fig. 3(c)],
approaching a finite, nonquantized value, whereas σxy con-
verges to 6(e2/h)kF/π for T → 0 [Figs. 3(b) and 3(d)]. The
sixfold degeneracy of σxy comes from the six β pockets in
the Brillouin zone (BZ). For 3D systems with a parabolic
band structure, kF of the lowest Landau band is B dependent

[16,23]. In particular, kF =
√

k2
F,0 − 2eB/h. Consequently, in

SrSi2 the quasiquantized Hall conductivity above BQL,β in the

zero-T limit is given by σxy = 6e2

h

√
k2

F,0,β − 2eB/h/π . With

increasing B, a transition at Bc ≈ 20.2 T from the QQHL to
an insulating phase can be identified in the intersection of the
ρxx curves obtained at different values of T in Fig. 3(a). In
the insulating phase [Fig. 3(d)], a striking observation can be
made: Just above Bc, there is a field range of approximately 2
T in which σxy remains quasiquantized up to approximately
BT = 22.2 T. Beyond BT, σxy deviates from the theoretical
single-particle model with a fixed Fermi energy as shown
in Fig. 3(b). Between Bc and BT, the deviation of σxy from
6(e2/h)kF,β/π at 0.6 K is less than 1%, even though ρxx(B)
increases monotonically for T → 0. This reflects the expected
features of a magnetic field tuned 3D QQHI phase.

Theoretically, the magnetic field driven transitions from
a liquid phase to an insulating phase in the quantum Hall
or quasiquantized Hall regime are considered to be transi-
tions between delocalized and localized phases [8–12,36,37].
They can be understood in the context of percolation path
network models, which provide similar results in two [8–12]
and three [38,39] dimensions. The insulating phases are not
entirely insulating in their bulk but are rather described as
separate clusters of liquid states that exist in potential minima
induced by random impurities and defects throughout the
samples. Since the electrons are effectively localized within
these clusters, the localization length can then be defined as
the correlation length—the width of the electron clusters λl.
As the critical magnetic field Bc found at the center of a
Landau-level band is approached, percolation theory states
that λl, i.e., the size of the clusters, increases according to the
power law,

λl ∝ |B − Bc|T −1/ζ ,

with the universal critical exponent ζ . As the critical point
or percolation threshold Bc is approached, the clusters grow
in size, merging together, and then begin to form extended
clusters of larger sizes, until at the percolation threshold,
enough clusters merge to form a percolating equipotential
which extends across the entire system.

The transport is then obtained via a scattering matrix,
which parametrizes the tunneling of electrons (holes) from
one liquid cluster to the other, leading to the diverging ρxx

for T → 0. When the phase coherence of the electron (hole)
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FIG. 3. (a) Longitudinal resistivity ρxx as a function of magnetic field B for various temperatures T . The field at which the β pocket enters
the quantum limit (the lowest Landau band) is denoted by BQL,β. Bc marks the transition point from a metallic to an insulating state. (b) Hall
conductivity σxy as a function of B at T = 0.6 K. In the insulating phase, between Bc and BT, the experimentally determined σxy (black curve)
scales with the calculated 3D quasiquantized Hall conductivity value (light green curve) estimated using the experimentally extracted Fermi
wave vector kF along B, the electron charge e, and the Planck constant h. The thickness of the light green line represents the error of the model,
originating from a statistical error of 1% in kF. BG,β marks the theoretical field at which SrSi2 hypothetically enters the band gap. Further
detailed descriptions of the highlighted magnetic-field values can be found in the Supplemental Material [30]. (c) ρxx as a function of T for
various B around Bc. (d) σxy as a function of T for various B around Bc. (e) Normalized resistivity, ρxx (B)/ρxx (Bc ), as a function of the scaling
parameter |B–Bc|T −1/ζ , with the critical exponent ζ = 9.9. (f) Zoomed-in view of the band structure of SrSi2, revealing two hole pockets.

wave functions is maintained after each tunneling event, the
insulating states are ordinary HIs [38,40,41]. Conversely, for
2D systems it has been shown that if the phase coherence
of the electron (hole) wave functions is destroyed after each
tunneling event, σxy is quantized; i.e., the system is a QHI
[40]. A similar mechanism may distinguish the ordinary HI
from the QQHI phase in 3D systems.

The isotherms of ρxx for such magnetic field induced
metal-insulator transitions typically scale with λl and thus
obey a universal scaling law with the parameter (B–Bc)T −1/ζ .
This applies to transitions between the QHL and QHI in 2D
systems [35] as well as to transitions between the 3D QQHL
and the ordinary HI [38,40], as in ZrTe5 [19]. In Fig. 3(e),
we show such a scaling analysis for SrSi2 above BQL,β , and
indeed find that all isotherms of ρxx fall on a single curve as a
function of (B–Bc)T −1/ζ for ζ ≈ 9.9.

Deeper in the insulating state, we observe that σxy begins to
deviate from its quasiquantized value, and the state seems to
evolve continuously towards a 3D HI. We define the crossover
between these insulating states by a transition field BT, at
which the experimentally determined σxy deviates more than
1% from 6(e2/h)kF,β/π . The crossover can be understood as a
field-driven change from a state of constant Fermi level EF to a
state at which EF is not strictly fixed anymore [20,21,23]. The
considerations presented above strongly depend on EF being

fixed, which ensures that the lowest Landau bands shift lin-
early with B. In materials with relatively small Fermi-surface
areas, such as SrSi2, such a situation can occur as a result
of defect states that absorb some of the conduction electrons
(holes), thereby ensuring overall charge neutrality. However,
the number of these defect states in real samples is limited.
Moreover, as soon as the defect states are fully occupied,
EF begins to move with B to avoid large charging energies
and σxy approaches its classical value. In agreement with our
observations, such a crossover usually occurs in large fields
as the bottom of the last populated Landau band approaches
EF. In Fig. 3(b), the hypothetical field, where SrSi2 enters the
band gap under the assumption of a fixed EF, is identified as
BG,β .

A specific feature of the quasiquantized Hall regime in 3D
systems is that BQL and σxy sensitively depend on the size of
the FS in zero field, i.e., kF,0,β [16,20,21,23]. To test whether
our observations, in particular, the onset and σxy in the 3D
QQHI state scale accordingly, we grew an additional batch of
SrSi2 samples with 2% Ca doping, which is known to shift
the intrinsic EF closer to the valence-band edge [26]. The
details of the experiments and analysis of the Ca-doped SrSi2

samples are provided in Figs. S3–S5 in the Supplemental
Material [30]. The results observed for the pure sample are
fully reproduced with Ca doping, but they are scaled by a
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smaller kF,0,β . This is an important cross-check that reaffirms
the occurrence of the 3D QQHI state in SrSi2.

In conclusion, we have reported experimental evidence for
a quasiquantized Hall insulator in the lowest Landau band
(quantum limit) of the 3D compound SrSi2. Our measure-
ments reveal a magnetic-field range in which the longitudinal
resistivity diverges with decreasing temperature and the Hall
conductivity only depends on the conductance quantum and
the Fermi wave vector in the field direction [ρxx(B) → ∞
and σxy(B) → 6(e2/h)kF,β/π as T → 0]. The quasiquantized
Hall insulator is a magnetic field induced insulating ground
state of a 3D material that is deeply rooted in quantum
physics.
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