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From observations to complexity of quantum states via unsupervised learning
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The vast complexity is a daunting property of generic quantum states that poses a significant challenge for
theoretical treatment, especially in nonequilibrium setups. Therefore, it is vital to recognize states which are
locally less complex and thus describable with (classical) effective theories. We use unsupervised learning
with autoencoder neural networks to detect the local complexity of time-evolved states by determining the
minimal number of parameters needed to reproduce local observations. The latter can be used as a probe of
thermalization, to assign the local complexity of density matrices in open setups, and for the reconstruction
of underlying Hamiltonian operators. Our approach is an ideal diagnostics tool for data obtained from (noisy)
quantum simulators because it requires only practically accessible local observations.
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Finding a suited notion of the complexity of quantum
many-body states is a key aspect of various lines of research
on correlated quantum systems. Entanglement entropy has
emerged as a highly relevant information-theoretic quantity in
the case of pure states, that reveals universal features in exotic
states of matter [1–6], in quantum many-body dynamics far
from equilibrium [7,8], and it indicates the feasibility of clas-
sical computer simulations [9–11]. Recently, it has also been
measured experimentally using cold atoms and trapped ions
[12,13]. Generalizations of entanglement entropy applicable
to mixed states have been proposed [14] and entanglement
witnesses can detect entanglement [15], e.g., in experiments
where entanglement entropy is inaccessible. An alternative
perspective is that of quantum circuit complexity, which cor-
responds to the minimal size of a circuit to prepare the state
of interest from a fiducial state [16–18].

Entanglement and circuit complexity, however, do not
universally align with the physically relevant degree of com-
plexity of many-body states. For example, although ergodic
many-body systems quickly become highly entangled under
unitary nonequilibrium dynamics, the late-time dynamics of
physically relevant local observables is described by the hy-
drodynamic equations of motion of a few quantities [19–21].
Moreover, their eventual thermalization implies that a few
thermodynamic quantities fully characterize local properties,
and entanglement entropy turns into thermodynamic entropy
of subsystems. Since typical initial states are weakly en-
tangled, it is expected that in terms of “local complexity”
associated with local observables, the nonequilibrium dynam-
ics typically passes an “information barrier” at intermediate
times. Such a “barrier” has been identified by considering
the operator entanglement entropy evolution in closed and
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open quantum systems [22–26] and the envisioned time de-
pendence of the local quantum state complexity is depicted
schematically in Fig. 1.

This Letter introduces an approach to analyze the local
complexity of quantum many-body states based on recently
developed machine learning techniques. At the core, we em-
ploy deep autoencoder networks [27], which we train in an
unsupervised fashion with observable expectation values, in
order to obtain a dimensional reduction enabling us to assess
the effective complexity of the quantum state of interest. We
address different regimes of the nonequilibrium dynamics of
open and closed quantum systems, which are indicated in
Fig. 1 by the different background shadings. This Letter is
structured such that we progress from (i) the infinite-time
limit over (ii) practically attainable steady states at late finite
times to (iii) the “information barrier” itself at intermedi-
ate and short times. Following this order, we can first test
our approach in a controlled setting by assigning the local
complexity of thermodynamic ensembles; these are idealized
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FIG. 1. Schematic picture of the “information barrier” of quan-
tum many-body dynamics. The different shaded areas illustrate the
logical structure of this Letter. We address (i) infinite-time steady
states, (ii) practically attainable states at late but finite times, and
(iii) short to intermediate times, where the “information barrier” is
crossed.
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local descriptions of steady states of chaotic or integrable
models [28–30]. Then, we investigate the dynamical approach
of a weakly dissipative system to such states in terms of
our complexity measure. For nearly integrable systems, the
absence of thermalization despite weak integrability breaking
sources is a nontrivial effect [31–35], which can be detected
with the unsupervised learning approach. Finally, we reveal an
“information barrier” at intermediate times by analyzing the
time-dependent local complexity in random unitary dynamics,
which has in many recent works been proven to be a useful
model to analyze typical features of nonequilibrium dynamics
[26,36–46]. Besides the assertion of complexity, we demon-
strate how further information about effective descriptions
can be extracted, e.g., to reconstruct Hamiltonians for thermal
states.

Being based on local observations, this approach is
suited to exploit highly resolved observations of many-body
quantum systems that are possible in modern quantum simu-
lators [12,47–53].

Autoencoder. The autoencoder [27] is an artificial neural
network consisting of multiple layers. The input and output
layers have the same dimension, and at least one of the addi-
tional layers between the two constitutes a “bottleneck” with a
considerably smaller number of NL neurons, spanning the NL

dimensional latent space. The part prior to the bottleneck is
called encoder, and the subsequent part is the decoder; see
Fig. 2(a). Deep learning with autoencoder neural networks
has previously been explored as a tool to investigate a variety
of physical problems. Examples are unsupervised discovery
of physical concepts [54,55], the identification of entangled
states [56], encoding of quantum many-body states [57], or
the exploration of relations to nonequilibrium statistical me-
chanics [58].

Here, the objective of an autoencoder is to reconstruct the
input data x given by local observations, despite the inter-
mediate compression in the bottleneck. For this purpose, the
reconstruction loss,

LDT (θ) = 1

|DT |
∑

x∈DT

[ fθ (x) − x]2, (1)

over a training data set DT is minimized by optimizing the
variational parameters θ of the neural network fθ . Thereby,
the encoder learns to map the input data to a suited low-
dimensional latent representation, which holds the necessary
information for the decoder to recover the original input x.
Achieving a small reconstruction loss depends on the ex-
istence of such a low-dimensional representation, and too
narrow bottlenecks lead to a larger loss LDT . Therefore, the
effective dimensionality of a data set can be analyzed by
varying the bottleneck width and comparing the correspond-
ing reconstruction errors. This analysis should be conducted
with validation data that were not used for training to exclude
overfitting; we will call the reconstruction error (1) evaluated
on the test data, the test error. Details about the network ar-
chitecture and optimization are included in the Supplemental
Material (SM) [59].

Training data. In the exemplary applications below we con-
sider quantum spin- 1

2 chains, with composite Hilbert spaces
H = ⊗

l hl , where dim(hl ) = 2 and l is the lattice site in-

(a)

(c)

(b)

FIG. 2. (a) Schematic depiction of the neural autoencoder net-
work. (b) Test error as a function of the number of latent variables
obtained by training on the transverse-field Ising model data from
(generalized) Gibbs ensembles with a varying number of charges NC .
Dashed lines are linear fits included as a guide for the eye. (c) t-SNE
of the latent representation of (G)GEs with different numbers of
charges NC and NL = 4. Color coding in each column is according
to expectation values 〈Ĉi〉/N of charges, denoted in the bottom.
Parameters: N = 12, hx = 0.6J , hz = 0.

dex. As input for the encoder, we use data sets, where
each element consists of the expectation values of all pos-
sible operator strings up to a fixed compact support S , i.e.,
Oρ (α) = Tr[ρ̂σ̂

α1
1 · · · σ̂ α|S|

|S| ] with density matrix ρ̂, and α =
(α1, . . . , α|S|) ∈ {0, x, y, z}|S| and σ̂

0,x,y,z
l denoting the iden-

tity and the Pauli matrices, respectively. Measuring these
observables amounts to a full tomography of the reduced
density matrix of the subsystem S . While the corresponding
cost grows exponentially with subsystem size |S|, we show
in our examples that already moderate supports |S| = 3, 4
are informative of the local complexity; for larger supports
it might be useful to employ the recently proposed classical
shadow techniques [13,60,61].

In our analysis, we consider families of quantum states
ρ̂λ parametrized by a potentially high-dimensional parameter
λ. Individual training data elements are given by observa-
tions {Oρλ

(α)|α ∈ {0, x, y, z}|S|} for sampled parameters λ. By
optimizing the reconstruction objective (1) with autoencoder
networks, we gain insights about the effective local complex-
ity of ρ̂λ that is relevant for local observations. The complexity
is quantified through the number of latent variables required
for faithful reconstruction according to Eq. (1). For this
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procedure it is crucial to exhaustively sample the space of
states ρ̂λ in order to avoid detecting spurious low-dimensional
representations.

Idealized steady states of closed systems and Hamiltonian
reconstruction. As a first test bed, we consider (generalized)
Gibbs ensembles [(G)GEs] of the spin- 1

2 quantum Ising model
(QIM)

Ĥ =
∑

j

(
Jσ̂ z

j σ̂
z
j+1 + hxσ̂

x
j + hzσ̂

z
j

)
, (2)

relevant for quantum simulators [51,52,62–65]. For hz = 0,
the QIM (2) is integrable, featuring an extensive set of mutu-
ally commuting local charges Ĉi (see SM [59]), one of which
is the Hamiltonian [66]. Conservation laws play a crucial
role in the long-time description of excited integrable/chaotic
systems [Fig. 1(i)], when reduced density matrices become
indistinguishable from GGEs/GEs of the form [28–30]

ρ̂λ = e
∑

i λiĈi

Tr[e
∑

i λiĈi ]
. (3)

Although long-time states show volume law entanglement
entropy [7,67], local observables are (for most practical pur-
poses) determined by a few Lagrange parameters λi. Our goal
is to detect these simple parametrizations.

To benchmark the utility of our approach to analyze such
characteristics of long-time states [Fig. 1(i)], we do not per-
form an actual time evolution but instead generate training
data from GGEs with randomly drawn Lagrange multipliers
λi ∈ [−2, 2] using exact diagonalization techniques for the
QIM (2) at hx = 0.6J , hz = 0 with system size N = 12. Each
sampled λ yields a training data element with expectation
values of all Pauli strings up to support |S| = 3, and we
separate these samples into training and test sets (see SM
[59]). Figure 2(b) displays the test errors [Eq. (1)] achieved
after training for different numbers of charges NC included
in the GGEs. We see that the error drops rapidly with an
increasing number of latent variables NL as long as NL < NC ;
for NL � NC the curves level off in all cases. This behavior of
the test error is expected because NC is the minimal number of
independent variables needed for encoding the GGE data. The
change of slope becomes more distinct with larger training
data sets [59].

In Fig. 2(c) we employ t-distributed stochastic neighbor
embedding (t-SNE) [68] to visualize what the autoencoder
learned to encode in its latent space. The t-SNE is a dimen-
sional reduction technique, where the proximity of data points
in the resulting low-dimensional representation is determined
based on their Euclidian distance in the original space. The
position of each point corresponds to the latent representation
of one set of observations. The color code indicates the corre-
sponding expectation value of the different charges. For NC =
1, we find that also for a higher-dimensional latent space,
NL > NC , the latent representation of observations lies on a
one-dimensional manifold with energy density monotonously
changing along it. When including more charges, we see that
the dimensionality of the latent representation grows. For
NC > 1, the locations of extremal regions of the color code
reveal that each charge can be associated with a different di-
rection in the latent space. This indicates that the unsupervised

learning procedure yielded an encoding directly related to the
physical charges. In the SM [59], we show that the learned
representation is connected to the charges through an invert-
ible map, which is sufficient for an unambiguous encoding of
the data.

Having demonstrated the possibility to identify and ana-
lyze ideal (G)GE states, we next turn to genuine late-time
states [Fig. 1(ii)]. To add some additional structure to these
states, we perform time evolution with respect to open
quantum systems. As we show in the following, the local com-
plexity of late-time states in closed and weakly open systems
share many properties.

Steady states of open systems. Here, we characterize steady
states of open systems described by the Liouville equation

˙̂ρ = i[ρ̂, Ĥ ] + ε
∑
j,γ

(
L̂(γ )

j ρ̂L̂(γ )†
j − 1

2

{
L̂(γ )†

j L̂(γ )
j , ρ̂

})
, (4)

with couplings to nonequilibrium baths represented by Lind-
blad operators L̂(γ )

j . The strength of the Markovian part is
parametrized by ε. In direct relation with the previous section,
at a weak coupling to dissipators, ε � 1, steady states for
a chaotic (integrable) Ĥ can be approximated with (G)GEs
[Eq. (3)] which are corrected by a small δρ̂(ε), ρ̂ ∝ ρ̂λ +
δρ̂(ε). For an integrable Ĥ , the absence of thermalization
despite weak integrability breaking sources is a nontrivial
effect observed in weakly open systems [31–35].

In this context, the unsupervised learning approach enables
us to address several natural questions. For the integrable Ĥ ,
we will utilize our approach to detect how many conservation
laws must be considered to reproduce local observables—a
question often raised in quench protocols in closed setups.
For the chaotic Ĥ , we will examine the effect of noise as of
relevance for quantum simulators that are never completely
isolated.

The Hamiltonian Ĥ is again the QIM [Eq. (2)] while the
Lindblad dissipators for different data elements are randomly
rotated single- and two-site operators (see SM [59]). The exact
form of L̂(γ )

j is not important, but sufficient randomness in
either the form or the relative dissipation rates is needed to
have a diverse enough training set. Figure 3 shows results
for steady states obtained using the time-evolving block dec-
imation technique [69,70] for vectorized density matrices on
systems of size N = 40, using bond dimension χ = 100. For
|S| = 4, we plot the test error as a function of the number of
latent variables for different strengths of coupling to Marko-
vian baths ε and for Hamiltonians that are either integrable or
nonintegrable.

At a weak coupling to baths ε = 0.001 and chaotic Ĥ the
test error levels off at NL ≈ 2 [Fig. 3(a)]. In the SM [59], we
show that the single latent variable, which already reaches
high accuracy, again corresponds to the energy, confirming
that Gibbs ensembles approximate density matrices. Further
latent variables capture information about δρ̂(ε) corrections.
We find that observables strongly and monotonously varying
along the perpendicular direction of the t-SNE representation
are related to the features of the baths, i.e., the correlations
that baths promote (see SM [59]). This could be used for
the detection of noise type, as relevant for quantum error
correction.
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FIG. 3. Results obtained by training on data from steady states
for setups with different strengths of openness ε [Eq. (4)] for chaotic
(top) and integrable (bottom) Ĥ . (a), (c) Test error as a function of
the number of latent variables. (b) t-SNE of the latent representation
for chaotic Ĥ and ε = 0.001, NL = 5. Color coding is with respect
to the energy density. (d) t-SNE of the latent representation for
integrable Ĥ and ε = 0.005, NL = 5. Color coding is with respect to
the (rescaled) densities of charges written in the inset. The gradient in
the coloring with respect to (5/N )〈Ĉ0 + Ĉ2〉 is roughly perpendicular
to the gradient of 〈Ĉ0〉/N . For our choice of Lindblads, inversion
nonsymmetric Ĉ1,3 show much smaller expectation values, i.e., not
comparable to 〈Ĉ0〉/N even upon rescaling with 100 and are thus
not so crucial for an approximate description. Parameters: N = 40,
hx = 1.152J , hz = 0.974J (top), and hx = 1.352J (bottom).

For integrable Ĥ [Fig. 3(c)] more than one latent variable
is needed even for an approximate description. The t-SNE in
Fig. 3(d) reveals that the first two latent variables are related to
linear combinations of the two most local inversion symmetric
charges Ĉ0 = Ĥ and Ĉ2, confirming that GGEs approximately
describe steady states [31–33]. Furthermore, our approach
exposes that of macroscopically many conservation laws, only
two of which are particularly relevant for an approximate
description of all local observables with support up to |S| = 4.
Further latent variables are for corrections δρ̂(ε). At stronger
ε = 0.2, 1.0, a larger number of latent variables is necessary.
Hence, for our choice of Lindblad operators, there is no simple
emergent description.

Random unitary evolution and information bottleneck. Fi-
nally, we study the local complexity at intermediate times
[Fig. 1(iii)] by analyzing states evolved by random unitary
dynamics. Random unitary circuits have recently received
substantial interest because they allow the analysis of typical
features of nonequilibrium dynamics [26,36–46]. We will now
show that in combination with our unsupervised learning of
local complexity, they provide suited grounds to explore the
information barrier, appearing at intermediate times in the
time evolution from simple (product) states. To detect the in-
formation barrier, a detour away from Hamiltonian dynamics
is necessary, in order to add a random component to the time
evolution. From the perspective of the autoencoder, states that
are obtained through deterministic dynamics starting from
the few-parameter family of product states have a constant

FIG. 4. Complexity during random unitary evolution of N = 20
spins captured by the autoencoder network. Starting from a simple
product state, an intermediate regime of high complexity is traversed
before an effective one-dimensional description emerges at late times
due to the presence of a conserved charge. For times t > 1 the scale is
logarithmic. Data points (colored dots) are augmented by discretized
heat map based on a bivariate B-spline interpolation.

complexity: The fixed unitary map can be absorbed in the
encoder/decoder of the network such that a few-parameter
representation is possible at all times. On the other hand,
the effective reduction of complexity at late times could also
be studied under Hamiltonian dynamics when considering a
higher-dimensional manifold of initial states.

Our model of random unitary evolution is based on an
alternating application of two-site gates on even and odd
links of the spin chain. The unitary gates vary randomly from
step to step, but they are homogeneous across the chain to
preserve translational symmetry. Moreover, we choose the
unitaries to be U (1) symmetric to impose magnetization as
a single conserved quantity. Building on the results of the
previous sections, we anticipate that a single Lagrange mul-
tiplier associated with the magnetization conservation will
locally characterize states at late times. The initial states are
random translationally invariant product states. At each time
step, we measure all operators with support |S| = 3 and train
the autoencoder with different NL-dimensional bottlenecks.
See SM [59] for details.

Figure 4 displays the test errors that we find as a function
of time and number of latent variables. The full description
of the initial product state by two Bloch angles is reflected in
very small test errors when using two or more latent variables.
At late times a single latent variable is sufficient for faithful
reconstruction, consistent with convergence to a reduced den-
sity matrix corresponding to an ensemble fully characterized
by a single Lagrange multiplier. At intermediate times, how-
ever, the reconstruction error becomes large even for rather
wide bottlenecks because the generic dynamics modeled by
random unitary circuits generates complex quantum states, for
which no effective low-dimensional parametrization exists.
In that sense, our unsupervised learning approach probes the
information barrier of quantum many-body dynamics. This
concept of local complexity should, on the other hand, not be
mistaken for the circuit complexity, which generically grows
as a function of the random circuit depth [18].
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Hamiltonian reconstruction. When our approach reveals
that the data have a (near) one-dimensional latent repre-
sentation [such as seen in the top of Figs. 2(c) or 3(b)],
presumably corresponding to thermal states ρ, this con-
nection can be exploited to reconstruct Ĥ , as we outline
now for the translationally invariant case. We first single
out operators Ô(α) ≡ Ô j=1(α) = σ̂

α1
1 · · · σ̂ α|S|

|S| for which we

measure a large average gradient of Oρ (α) = Tr[ρ̂ Ô(α)]
along the effective one-dimensional latent manifold, spanned
by different temperatures. These are candidate Hamilto-
nian terms Ĥ = ∑

j,α aαÔ j (α). Using Newton’s method or
similar, we find coefficients aα up to a scaling factor
from the conditions Tr[Ô(α) e

∑
j,α aαÔ j (α)]/Tr[e

∑
j,α aαÔ j (α)] −

Oρ (α) = 0. Testing this approach with the data presented in
Fig. 2, hx/J is reconstructed within the accuracy of the New-
ton’s method. Using the data in Fig. 3(b) for ε = 0.001, the
relative strength of the fields is obtained within 5% and 1%
for hx/J and hz/J , respectively. See the SM [59] for more
information on the algorithm. In contrast to other methods
[71–74], our approach is unsupervised and relies only on
expectation values.

Discussion. We have introduced an unsupervised learning
approach that reveals information about the existence of ef-
fective low-dimensional descriptions of many-body quantum
states. Although no domain knowledge is provided during
optimization, we showed for some examples how physical
information can be extracted from the trained autoencoders.
In that sense, our results constitute a step towards interpretable
machine learning of physics.

An alternative to our approach is the analysis of the in-
trinsic dimension of the data sets [68,75–85]. In the SM [59]
we include a corresponding analysis of our data as a refer-
ence. While the results are consistent, the autoencoder method

seems more robust, and it has the advantage to reveal further
information beyond the minimal number of independent vari-
ables.

Autoencoders could be used, for example, to detect GGEs
in weakly open trapped-ion setups [33]. Natural extensions
of the present work could be the investigations of Floquet
prethermal plateaus and of thermalization in strongly disor-
dered many-body systems. Our method could complement
the recent proposal to use supervised or confusion learning
based on observations from cold atom experiments [86]. In the
SM [59], we give evidence that autoencoders can be used for
noise-type recognition, relevant for quantum error correction,
which opens another exciting direction. Finally, interesting
questions to explore are the possibilities of learning with
incomplete or imperfect observations. In that regard, refine-
ments of the deep learning model might be required, e.g., the
utilization of variational autoencoders for resilience against
noise [87].
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