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Quantum criticality using a superconducting quantum processor
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Quantum criticality emerges from the collective behavior of many interacting quantum particles, often at
the transition between different phases of matter. It is one of the cornerstones of condensed matter physics,
which we access on noisy intermediate-scale (NISQ) quantum devices by leveraging a dynamically driven
phenomenon. We probe the critical properties of the one-dimensional quantum Ising model on a programmable
superconducting quantum chip via a Kibble-Zurek process, obtain scaling laws, and estimate critical exponents
despite inherent sources of errors on the hardware. In addition, we investigate how the improvement of NISQ
computers (more qubits, less noise) will consolidate the computation of those universal physical properties.
A one-parameter noise model captures the effect of imperfections and reproduces the experimental data. Its
systematic study reveals that the noise, analogously to temperature, induces a new length scale in the system.
We introduce and successfully verify modified scaling laws, directly accounting for the noise without any prior
knowledge. It makes data analyses for extracting physical properties transparent to noise. By understanding
how imperfect quantum hardware modifies the genuine properties of quantum states of matter, we enhance the
power of NISQ processors considerably for addressing quantum criticality and potentially other phenomena and
algorithms.
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The advent of quantum computing promises to disrupt
nearly every industry, from materials science, chemistry, and
drug discovery to security, optimization, as well as artifi-
cial intelligence. However, current quantum processors have
limited computing capabilities, with only a small number
of imperfect qubits available. Although quantum advantage
[1] has been claimed on such NISQ devices [2,3], it is
only on specific tasks of narrow interest. Therefore, a major
goal is to address practical problems with NISQ machines
[4]. Quantum many-body problems, which seek to describe
interacting quantum degrees of freedom, provide an ideal
playground. Not only are they suitable for current and future
NISQ hardware, but they are also of prime importance in basic
research. They span nuclear, high-energy, condensed matter,
atomic, molecular, optical physics, and quantum chemistry.
Only a corner of quantum many-body problems can be
solved efficiently with classical computers—these can serve
for benchmarking—whereas the vast majority is still open.

For instance, competing interactions between quantum par-
ticles can lead to the emergence of exotic phases of matter and
phase transitions between them [5,6]. Of particular interest
are quantum many-body systems experiencing a second-order
quantum phase transition, as they exhibit quantum criticality
[7–9]: an emerging scale invariance dictating how physi-
cal quantities (e.g., susceptibility, specific heat, spectral gap,
correlations, etc.) behave close to the transition. Quantum
criticality is tabulated into universality classes, defined by a
set of critical exponents characterizing the nature of the transi-
tion. Remarkably, universality classes are independent of most
of the microscopic details of a quantum system and depend

instead on general attributes such as dimension and sym-
metries. Hence, accessing, classifying, and understanding
quantum criticality is a formidable fundamental physics
challenge. A conventional way for investigating quantum crit-
icality in a quantum many-body system consists of studying
its ground state properties as a function of a parameter g driv-
ing the transition, with the transition taking place at g = gc,
known as the quantum critical point (QCP) [6]. However,
obtaining the lowest-energy state of a given Hamiltonian Ĥ(g)
is a cumbersome task for NISQ devices.

We bypass this obstacle by leveraging a dynamically driven
phenomenon to access quantum criticality, the Kibble-Zurek
(KZ) mechanism [10,11]. NISQ processors have proven to be
well-suited in simulating quantum dynamics [12–33], as the
time evolution is a unitary operation that can be straightfor-
wardly translated into a shallow quantum circuit in most cases.
The KZ mechanism is triggered by time evolving a system
from a point A to a point B of its phase diagram at a given
rate ∼T −1, with the transition happening somewhere on the
way. With the spectral gap of a quantum system vanishing
as � ∼ |g − gc|zν close to a second-order phase transition
(with z, ν > 0 the dynamical and correlation length critical
exponents, respectively) [5,6], we expect a characteristic time
scale τ and associated gap scale h̄/τ , where the adiabaticity
of the evolution breaks down. It happens at a dimensionless
distance |g − gc|/gc ∼ τ/T of the critical point, and one finds
that τ ∼ T zν/(1+zν). Likewise, a characteristic length scale
� ∼ τ 1/z emerges. It diverges in the adiabatic limit, leading
to scale invariance, as one would expect in the ground state of
Ĥ(g = gc).
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FIG. 1. (a) Quantum system dynamically driven from a point A
(paramagnetic phase—PM, for the quantum Ising model considered
here) to a point B (ferromagnetic phase—FM) of its phase diagram,
with a transition happening on the way, characterized by a quantum
critical point (QCP). (b) Decomposition of the operator Û zz

m (φ) =
exp(iφẐmẐm+1) by sandwiching a single-qubit rotation gate around
the z axis by two-qubit CNOT gates. (c) Quantum circuit for the
discretized unitary operation of Eq. (2) for the quantum Ising model
Eq. (3). The PM ground state is constructed by applying Hadamard
gates H on individual qubits. The second step is the time-evolution,
generated by a first-order Suzuki-Trotter expansion. Here, Û x

m(φ) =
exp(iφX̂m ).

Because the KZ mechanism is controlled by the same
critical exponents as the static physics, one can exploit it to
access key properties of quantum criticality in many-body
systems. For example, the KZ process was recently used
in a Rydberg atomic simulator to study a quantum critical
point [34]. Here, we analyze a classic example of quantum
criticality in one spatial dimension through both a gate-based
quantum processor and a classical matrix product state com-
putation incorporating noise. We find that the effect of noise
is analogous to that of temperature: It induces a length scale
that can be accounted for through modified scaling laws. Our
results enhance the power of NISQ processors significantly
by making data analyses transparent to inherent noise. Un-
derstanding how imperfect quantum hardware modifies the
genuine properties of quantum states of matter is a prereq-
uisite for condensed matter simulations, which are doomed to
be noisy in the near future.

One may write a Hamiltonian interpolating between points
A and B in a KZ process as

Ĥ(T, t ) = (1 − t/T )ĤA + (1 + t/T )ĤB, (1)

running from time t = −T to t = +T with ĤA,B describing
A and B, respectively. After initially preparing the system
|�(t = −T )〉 into the ground state of ĤA, it is dynamically
driven to point B,

|�(t )〉 = T exp

[
− i

h̄

∫ t

−T
dt ′ Ĥ(T, t ′)

]
|�(−T )〉, (2)

as pictured in Fig. 1(a). T indicates a time-ordered exponen-
tial. Close to the transition, i.e., around a model-dependent
value of t , the KZ mechanism will kick in, and |�(t )〉 will
display universal quantum critical properties. They can be

extracted and studied by computing standard observables sup-
plemented with a scaling analysis [35].

We consider the quantum Ising model in one dimension,
whose microscopic Hamiltonian interpolates between param-
agnetic (PM) ≡ A and ferromagnetic (FM) ≡ B phases,

ĤPM = −
∑

n

X̂n, and ĤFM = −
∑

n

ẐnẐn+1, (3)

with X̂n and Ẑn as Pauli operators acting on qubit n. This
model presents several advantages: first, it provides the stan-
dard paradigm of a solvable QCP at the transition between
the two phases. Second, its dynamics can be encoded as a
quantum circuit with a relatively low gate count. Third, in the
basis where Ẑ is diagonal, the starting point (ground state of
ĤPM) is an equal superposition of all basis states, which can
be readily obtained by applying individual Hadamard gates
on each of the qubits. With the interpolation of Eq. (1), it
is known that the QCP is located at t = 0. Furthermore, the
KZ mechanism on the quantum Ising model is extensively
documented [34,36–48].

The evolution operator in Eq. (2) is discretized by mak-
ing the Hamiltonian operator piecewise constant over a
time step δt . Thanks to the locality of the Ising terms in
Eq. (3), the exponentiation can be performed using a Suzuki-
Trotter expansion [49], at the expense of a systematic—yet
controlled—error. It engenders operators of the form Û x

m(φ) =
exp(iφX̂m) and Û zz

m (φ) = exp(iφẐmẐm+1), which can be easily
translated into standard quantum logic gates. The former is
directly related to a single-qubit rotation gate around the x
axis, Rx(φ), and the latter can be decomposed into standard
gates [50], see Fig. 1(b). The quantum circuit for one time
step using a first-order Suzuki-Trotter expansion is shown in
Fig. 1(c).

To investigate quantum criticality, we look at the two-point
correlation function,

C(T, t, x) = 〈�(t )|Ẑr Ẑr±x|�(t )〉, (4)

between a reference qubit r assumed in the middle of the
system and another qubit at distance x. Close to the QCP, it is
expected to show a universal behavior of the form [42,44,45],

C(T, t, x) = �−η F (x/�, t/τ ), (5)

with F being a nonuniversal scaling function, η is the anoma-
lous critical exponent, � and τ the characteristic length and
time scales of the KZ mechanism, which depend on T and
the critical exponents. � can be interpreted as the length over
which the system will be defect-free. From there, one can
deduce that the adiabatic limit for a system of size L will be
recovered for drive times T � L(1+zν)/ν—though the point of
the KZ mechanism is that useful physics can still be extracted
outside of the adiabatic regime.

To verify the scaling law of Eq. (5) we emulate the quantum
circuit corresponding to an open chain of L = 257 qubits
together with a second-order Suzuki-Trotter expansion and
time step δt = 0.1 for different values T = 8, 16, . . . 256. We
set h̄ = 1. Although it is way out of reach for NISQ hard-
ware, it allows us to obtain benchmark data. The emulation
is performed using matrix product states, a well-established
and efficient tensor network technique for classically simulat-
ing one-dimensional quantum systems [52]. The correlation
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FIG. 2. (a)–(c)–(e)–(g) Two-point correlation function of Eq. (4) at t = 0 plotted versus the distance x for different drive times T . (b)–
(d)–(f)–(h) Rescaled two-point correlation function according to Eq. (5) with ν = z = 1 and η = 1/4. (a), (b) Tensor network emulation of
the quantum circuit for L = 257 qubits with a second-order Suzuki-Trotter expansion and time step δt = 0.1. (c), (d) Perfect emulation of the
quantum circuit using L = 7 qubits and performing two time steps of different duration δt to access various drive times T . (e), (f) Simulation
on Rigetti Aspen-9 superconducting quantum chip using the same parameters as (a) and (b). (g), (h) Noisy emulation of the quantum circuit to
model the imperfect hardware. (i), (j) Chi-square per degree of freedom χ2/Ndof quantifying the quality of the data collapse for the two-point
correlation function of Eq. (4) as a function of the critical exponents ν and η, see Supplemental Material [51] (smaller is better). The best
collapse should be obtained from the genuine values of ν and η. The exact values are marked at the intersection of the two bold straight white
lines. (i) Using the benchmark data of (a). (j) Using the quantum processor data of (e).

C(T, t = 0, x) is plotted in Fig. 2(a). We proceed to the rescal-
ing of the data using the exactly known value of the critical
exponents of the Ising universality class in 1 + 1 dimen-
sions: ν = z = 1 and η = 1/4 [53]. The result is displayed in
Fig. 2(b) where an excellent data collapse is found. An impor-
tant point that we make in the Supplemental Material [51] is
that, by reducing the standards of an ideal simulation: smaller
number of qubits, larger time step, lower-order Suzuki-Trotter
expansion, and shorter drive times T , one is still able to pro-
duce reasonable physics that should be accessible on current
NISQ devices, see also Figs. 2(c)–2(d).

We now run the quantum circuit on a quantum computer.
We use Rigetti Aspen-9 superconducting quantum chip and
the provided compiler to translate the quantum circuit into
the native gate set [51]. We work with seven qubits, each di-
rectly representing one Ising spin of the Hamiltonians Eq. (3).
We perform two time steps using a first-order Suzuki-Trotter
expansion, and vary its duration δt to access different drive
times T . We collect 32 768 basis states as outputs, from which
we compute the two-point correlation function of Eq. (4).
The raw data are shown in Fig. 2(d). We observe a distinct
decay of the correlation with the distance, but there is no clear
hierarchy for the different T values, although the smaller ones
tend to be generally lower. Note that, unlike the benchmark
emulation, the range of available drive times and distances is
more restricted. In the corresponding lower panel, we rescale
the data according to Eq. (5) and plot for comparison the scal-
ing function extracted from the benchmark data of Fig. 2(b).
There is a good qualitative agreement, despite the hardware
being imperfect.

By leaving the exponents ν and η as free parameters and
solving the optimization problem seeking to maximize the

quality of the data collapse (e.g., by minimizing the chi-square
per degree of freedom χ2/Ndof ) [51,54], we can extract a
region of maximum likelihood for their values. The corre-
sponding results for the benchmark and quantum processor
data are shown in Figs. 2(i) and 2(j). The procedure on the
benchmark data gives back the known values of the critical
exponents. As for the experimental data, we are not able
to precisely determine values for the exponents, as there is
no clear minimum for the chi-square (cause by a smaller
number of qubits, a smaller range of drive times T , noise,
etc.). Nonetheless, we find that the exact values are within the
region with minimum χ2/Ndof , and which provides bounds for
the exponents. We expect that the continuous improvement
of NISQ processors will tighten the bound on the exponent
values, see the Supplemental Material for additional data [51].

Noise is inherent in NISQ devices, has various origins,
and is by definition machine specific. Familiar sources include
decoherence through relaxation and dephasing, readout error,
and the qubits being imperfect two-level systems, which can
result in faulty quantum operations. Here, we model the effect
of noise with a depolarizing channel [55]. The noisy system is
emulated by performing the following stochastic modification
to the quantum logic gates [56,57]:

Ĝm → Ĝmâm,

Ĝm,n → Ĝm,n(âm ⊗ b̂n),
â, b̂ ∈ {Î, X̂ , Ŷ , Ẑ}, (6)

where Ĝm and Ĝm,n represent a one-qubit acting on m and a
two-qubit gate acting on (m, n), respectively. The probability
that it remains unchanged, i.e., â(= b̂) = Î , is 1 − p, with p
a parameter controlling the strength of noise. All other com-
binations are uniformly distributed with probabilities p/3 and
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FIG. 3. (a) Two-point correlation of Eq. (4) as a function of the
distance x, rescaled by the p = 0 data for L = 33 qubits. Emulation
details: 36 513 gates comprised of Hadamard, Û x , and Û zz with T =
32, t = 0, and second-order Suzuki-Trotter expansion where δt =
0.1. The results are averaged over �2 × 103 random circuits. Each
curve corresponds to a value of p whose code color can be read from
panel (b). Fit of the observed exponential decay ∼ exp[−x/ξ (p)]
(bold line) to extract length ξ (p). (b) Length ξ (p) as a function of
p, which shows a ∼1/p dependence. (c), (d) Rescaled two-point
correlation function according to Eq. (5) (z = ν = 1 and η = 1/4).
The form of the circuit is the same as the one in panel (a) with
p = 10−4 for various drive times T . (d) Same as (c) except that the
y-axis is multiplied by an additional term with ξ̃ ≈ 180, see Eq. (7).

p/15 for one- and two-qubit gates, respectively. The process
has to be repeated many times to generate random disordered
circuits over which the results are averaged. The Ẑ gates
induce dephasing, the X̂ gates induce a qubit flip, and Ŷ a
mix of the two.

To assess the reasonableness of the noise model of Eq. (6),
we emulate the experiment in the presence of noise and at-
tempt to find a value for the parameter p, reproducing at
best the experimental data of Figs. 2(e) and 2(f). Because
all the circuits run on the quantum processor involve two
time steps using a first-order Suzuki-Trotter expansion, they
all have the same form and size: we anticipate that different
quantum circuits performing the same task (following, e.g.,
compilation) will simply lead to a rescaled value of the phe-
nomenological parameter p. To that end, we emulate with
noise the circuit of Fig. 1(c). We report the results in Figs. 2(g)
and 2(h) for p ≈ 0.08. Despite being a simple one-parameter
phenomenological model which may not capture the various
imperfections of the hardware, a good agreement with the
experimental data is observed, thus validating to some extent
the model.

To better understand the physics induced by the noise
model on the time evolution, we study the combined systems
as a function of p using matrix product states. The form and
size of the circuit are fixed with L = 33 qubits and 36 513
gates. We plot in Fig. 3(a) the two-point correlation function

of Eq. (4) rescaled by the noiseless data as a function of
the distance x. We observe an exponential decay of the form
C(x, p) = C(x, p = 0)e−x/ξ (p), meaning that the noise gives
rise to a new length scale in the system. We extract it in
Fig. 3(b) and find that ξ (p) ∼ 1/p. A simple argument where
one supposes that the effect of a single defect in a circuit
volume dx (with d the depth) will reduce the correlation
by a factor ε > 1, leads to C(x, p) ∼ C(x, p = 0)/εpdx for
an average number of defects ∼pdx, assuming their effect
is uncorrelated. It is compatible with the exponential decay
observed in the emulations reported in Figs. 3(a) and 3(b).
The depth dependence ξ ∼ 1/d at fixed p is verified in the
Supplemental Material [51]. Note that for a fixed time step
δt , the circuit depth is proportional to the drive time T , and
we use d → T in the following. The noise-induced length
scale ξ ∼ 1/pT competes with the characteristic length scale
� ∼ T ν/(1+zν) of the KZ mechanism. In the one-dimensional
quantum Ising model studied here, for the KZ mechanism to
dominate over the noise and observe genuine quantum criti-
cality, one needs p � T −3/2 ∼ L−3. An analogy can be drawn
between the noise in the quantum circuit and thermal effects
induced by a finite temperature  in the quantum Ising model,
as they both lead to a length scale ξ−1 ∼  ∼ p [58]. Such
an analogy between noise and effective temperature was also
reported in open quantum systems [59–61] and sudden quench
protocols subject to a time-dependent white noise [62,63].
Interestingly, one can include a new parameter ξ̃ = T ξ in the
critical scaling of Eq. (5), accounting for the effect of noise on
quantum criticality,

F (x/�, t/τ ) → F (x/�, t/τ ) × exp(−xT/ξ̃ ). (7)

Equation (7) is confirmed by emulations based on matrix
product state for L = 33 qubits and p = 10−4, with the
form of the circuit and other parameters similar to those
of Figs. 3(a) and 3(b). The raw and noise-corrected data
collapses are displayed side by side in Figs. 3(c) and 3(d),
with a substantial improvement upon including the parameter
ξ̃ ≈ 180, which can be found without any prior knowl-
edge, comparably to the critical exponents [51]. The reduced
connectivity at the boundaries of the system makes the ex-
ponential decay of Fig. 3(a) drifts for these qubits, and the
noise correction is not directly applicable on smaller-scale
systems, such as the ones simulated on the quantum processor
displayed in Figs. 2(e) and 3(f).

While quantum criticality is well-understood in 1 + 1 di-
mensions, much less is known beyond that. The absence
of efficient classical methods to simulate certain types of
quantum many-body systems, e.g., interacting fermions or
frustrated magnets, limits our microscopic understanding of
these phases of matter and their transitions. Here, we have
shown that current NISQ devices can simulate quantum criti-
cality by leveraging a dynamically driven phenomenon. Using
a programmable superconducting processor, we demonstrated
this approach on the one-dimensional quantum Ising model
by obtaining a good agreement with benchmark data. Despite
the limited number of qubits and the restricted depth of the
quantum circuits, we estimated the critical exponents. The
continuous improvement of NISQ hardware will generate bet-
ter quality and larger-scale data. Not only will it leads to more
accurate results, but it will also open the way to uncharted
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problems. In addition, we have shown that one can directly
account for the inherent noise of the current generation of
quantum computers. We found that the noise induces a length
scale controlling how far qubits can be nontrivially correlated.
It can be included in scaling laws, thus making the noise irrel-
evant to some extent when investigating quantum criticality.
Whether this noise-induced length scale is a general feature
arising in other quantum algorithms remains to be explored,
as similar behavior was recently reported in other kinds of
many-body problems [64,65].
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