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Coupled-wire constructions have been widely applied to quantum Hall systems and symmetry-protected
topological (SPT) phases. In this Letter, we use the coupled one-dimensional nonchiral Luttinger liquids with
domain-wall structured mass terms as quantum wires to construct crystalline higher-order topological super-
conductors (HOTSCs) in two-dimensional (2D) interacting fermionic systems by two representative examples:
a Dy-symmetric class-D HOTSC and a Cys-symmetric class-BDI HOTSC, with Majorana corner modes on the
edge. Furthermore, based on the coupled-wire constructions, the quantum phase transitions between different

phases of 2D HOTSCs by tuning the interwire coupling are investigated in a straightforward way.
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Introduction. Topological phases of quantum matter have
become one of the greatest triumphs of condensed mat-
ter physics since the discovery of the fractional quantum
Hall effect [1,2]. Topological order defined by patterns of
long-range entanglement provides a systematic way of un-
derstanding the topological phases of quantum matter [3].
Furthermore, the interplay between symmetry and topology
plays a central role in the topological phases of quantum
matter. In particular, symmetry-protected topological (SPT)
phases have been systematically constructed and classified
in short-range entangled systems [4—26]. An elegant exam-
ple of SPT phases is a topological insulator, protected by
time-reversal and charge-conservation symmetry [27,28]. Re-
cently, crystalline SPT phases have been intensively studied
[29-60], with great opportunities for experimental realizations
[61-64]. In particular, different from internal SPT phases, the
boundaries of two-dimensional (2D) crystalline SPT phases
are almost gapped but with protected 0D corner zero modes.
These types of topological phases are called higher-order
topological phases [65-76].

The study of higher-order topological phases mainly fo-
cuses on free-fermion systems, because interactions and
crystalline symmetries restrict the analytical study of the lat-
tice model, and only the numerics on a finite-size lattice can
give some insights. On the other hand, a clear and powerful
tool for studying the topological phases of quantum matter
is the coupled-wire construction [77-88]. One decomposes a
higher-dimensional system into an assembly of 1D quantum
wires, and topological properties then arise from the suit-
able couplings of them. A unique advantage of coupled-wire
construction is that, different from the higher-dimensional
quantum field theory, the powerful bosonization technique
of one-dimensional subsystems can be used to challenge the
strong interaction effects. Different phases are manifested by
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patterns of coupled wires and the quantum phase transition of
different phases is controlled by tuning interwire couplings
directly. Therefore, an important open question arises: Can
strongly correlated higher-order topological phases can be
constructed from a coupled-wire perspective?

In this Letter, we systematically construct a crystalline
higher-order topological superconductor (HOTSC) in two-
dimensional interacting fermionic systems by coupling the
circular 1D nonchiral Luttinger liquids with domain-wall
structured mass terms as quantum wires, via two typi-
cal intriguing interacting examples, a D4-symmetric class-D
HOTSC and a C4-symmetric class-BDI HOTSC, whose
higher-order edge modes are Majorana zero modes (MZMs)
[45,46]. By suitable interwire tunnelings/interactions, several
1D quantum wires are assembled and fully gapped, leaving
a few dangling quantum wires at the edge or near the center
of the systems. Near the center, the dangling quantum wires
are fully gapped by intrawire interactions; on the edge, the
dangling quantum wires explicitly manifest the higher-order
topological edge modes of 2D HOTSCs by their domain-wall
structure. Different 2D HOTSCs are characterized by different
patterns of coupled wires. Lattice translation symmetry can
also be imposed straightforwardly. Furthermore, with a con-
crete coupled-wire construction of a 2D HOTSC, we directly
investigate the quantum phase transitions by tuning different
coupling constants of interwire interactions. We stress that our
arguments are not sensitive to a specific geometry of quan-
tum wires: The calculations are applicable to any geometry
respecting the specific crystalline symmetry, so we choose
circular geometry for calculational convenience.

Dy-symmetric class-D HOTSC. For 2D D4-symmetric sys-
tems with spinless fermions, there is an intriguing interacting
2D HOTSC with protected Majorana corner modes & and &/
(k =1, 2, 3,4) that can be reformulated to complex fermions
cZ = (& + ié,é)/\/i (see Fig. 1). In this section we construct
this phase by “almost free” coupled wires, with a necessary
interaction only defined near the D, center. These Majorana
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FIG. 1. Coupled-wire construction of 2D fermionic crystalline

higher-order topological phases. Right panel: Dangling gap-
less modes of D,-symmetric class-D or C4-symmetric class-BDI
HOTSCs. Dashed lines are reflection axes.

corner modes are also reformulated in terms of domain walls
of 1D nonchiral Luttinger liquids [89]. Consider 2n decoupled
1D quantum wires with circular geometry (see Fig. 1), then
the Lagrangian of the jth quantum wire is
i KD i iy Vi e (o

Ly = 4_(39¢1)(8f¢1) + 8_(89‘151)(39‘751)’ )
where ¢/ = (¢j , ¢2)T is the two-component bosonic field
of the jth quantum wire and K/ = 67 is the K matrix of
the topological term [90]. The total Lagrangian of decoupled
wires is Lo = ZZ” 1 Cé. The D4 symmetry properties of these
bosonic fields are (R € C4/M; € Z% is the rotation/reflection
generator of Dy = Cy X Z3! symmetry)

. ¢{(9) > —¢>{<9 +1/2),
PIO) > —pl(O0 +7/2) + 7,

u :{ Pl(0) > —pJ2m — 0) +7/2,

j j @
¢,0) = —¢12m —0) + 7 /2.

To figure out the Majorana corner modes of a D4-symmetric
HOTSC, we should further introduce the mass term with a
domain-wall structure of each quantum wire,

Ewau = msin(260) cos [¢J )+ ¢y (9)] 3)

where £Wd11 is symmetric under Eq. (2), and Ly =
22" E{lel For each quantum wire with a domain-wall struc-
tured mass term, there are four complex fermion zero modes
at the poles CT 534 Of the circle, with 6 =0, 7/2, 7,37 /2
because of the vanishing mass term, which are equivalent to
eight MZMs. These dangling 0D gapless modes cannot be
gapped in a D4-symmetric way.

Subsequently we define two types of D4-symmetric Eq. (2)
interwire tunnelings that couple the (2j — 2 + k)th and (2] —
1 + k)th quantum wires (m;, my < m, k =1, 2),

2
Ll =m Y cos[¢HO) — 927 HO)]. @

a=1

and Ly = Z?zl L!,. There are two extreme cases: m; #

0, mp =0/m; =0, my # 0 correspond to the phase where

L:1/L,» dominates the interwire physics. For the L.i-
dominant phase, the (2j — 1)th and 2 jth wires are paired up
and gapped, hence the corresponding system is fully gapped
on a open circle and is topologically trivial.

For the £.,-dominant phase, the 2 jth and (2j + 1)th wires
are paired up and gapped, hence all 1D wires except the first
and 2nth are gapped. The first wire on the edge of the system
presents four complex fermions/eight MZMs at the poles of
the circle, which are exactly the second-order topological sur-
face modes of a 2D D4-symmetric class-D HOTSC. Near the
Dy center, there are also gapless modes on the 2nth quantum
wire. Distinct from quantum wires away from the D, center,
the bosonic field ¢ of the 2nth quantum wires with different
polar angles can tunnel to/interact with the field at other
places. Consider two interacting terms of the 2nth quantum
wire near the D4 center,

2
Liw=m Zcos (Z (62" (6) — ¢ (B — 9>]), Q)

a=1

i.e., the intrawire couplings of the 2nth wire lead to fully
gapped bulks. Equivalently, a nontrivial 2D class-D Djy-
symmetric HOTSC is described by 1D coupled wires with
Lagrangian E& = Lo+ Lyan + L2 + Line- The intriguing
interacting nature of this HOTSC is reflected by L;, near
the D, center. On the other hand, the physics away from
the D4 center is well understood on a noninteracting level.
The classification of a 2D class-D HOTSC is Z,, composed
by phases dominated by interwire coupling £.; and L., (see
Fig. 5).

Cy-symmetric class-BDI HOTSC. For 2D BDI-class sys-
tems with C; symmetry, there is another type of intriguing
interacting 2D HOTSC [45]. We construct these phases by
“interacting” coupled wires in this section. Consider 4n 1D
circular quantum wires, where each wire is described by
Lagrangian Eq. (1) with ¢/ = (¢, ¢, ¢3, ¢3)" as the four-
component bosonic field of the jth quantum wire, K/ = 0* @
o* as the topological K matrix, and the total Lagrangian of
all 4n 1D quantum wires is Lo = Z‘;":l L. The (C4 x ZT)-
symmetry properties are defined as [90]

¢l > b + b — d] —7/2,
Jj J_ 4 Jj
R:| bt 0 6
O] > b + ¢ — pl +7/2,
¢l > ¢+ ) — b +7/2,

$[(0) = $©0) — $3(0) + (0,
$3(0) = ¢{(0) + $3(0) — ¢1(0) + 7,
$3(0) > ¢(0) + $3(0) — $5(0) + 7,
$1(0) > §(O) + $3(0) — $3(0).
Then we repeatedly figure out the Majorana corner modes
by backscattering terms with a domain-wall structure: For

each quantum wire, we introduce a symmetric [cf. Egs. (6)
and (7)] mass term

wall =m E COS(

)

)cos [610)— ! )], ®
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and ﬁwall = Z4n ﬁj

wan- For each quantum wire, there are
four gapless complex fermions CZ (eight MZMs & and &))
at the poles of the circle, where two of them at the north
and south poles are from the first term of Eq. (8) and other
two at the east and west poles are from the second term of
Eq. (8). These dangling gapless modes cannot be gapped in a
(C4 x ZY)-symmetric way.

Subsequently we consider (Cy x ZI)-symmetric [cf.
Egs. (6) and (7)] interwire interactions including four 1D
quantum wires (k = 1, 2, 3, 4) [90],

2
j 4j—4+k 4j—4+k 4j—3+k 4j—3+k
Ll =mi Y cos [~ — g 4 gl — g

a=1

j— 4j—4+k j— 4j—2+4k
+COS[¢2J 4+k ¢] + +¢4/ 2+k d)j +]

4j—2+k 4 2+k 4j—1+k 4j—1+k
+cos [y 7 — st T+ oy T — T T

¢4/ 1+k]

i 4j—3+k _
+ cos [y T — g 4 g1

)
and the total Lagrangian of the interwire couplings is
Lo = Z;’;} L, . There are four extreme cases: my # 0 (k =
1,2,3,4) as the only nonzero index in m; 334, which cor-
responds to the phase that £ that dominates the interwire
physics. For the £.-dominant phase, the (4j — k)th (k =
0, 1,2, 3) quantum wires are assembled and gapped, hence
the spectrum is fully gapped on a 2D open circle, and the
corresponding phase is topologically trivial.

For the £.4-dominant phase with m4 # 0 and m; 3 =0,
by applying Lyan and L4, the (4j + 3 — k)th quantum wires
are assembled and gapped, and there are only four quantum
wires remaining gapless: the first, second, third on the edge,
and 4nth near the C; center. On the edge, the first, second,
and third quantum wires with dangling gapless modes are
treated as the higher-order edge state of the 2D C4-symmetric
class-BDI HOTSC; near the C, center, in order to obtain a
HOTSC, we should further add some intrawire interactions
to fully gap the 4nth quantum wire in order to get a fully
gapped bulk state. Consider the four-body interacting terms
of a 4nth quantum wire, composed of the backscatterings of
bosonic fields qﬁf”z 3.4 with different polar angles [90],

Li = Z cos [¢3"(8) — 93, (6) + 60 + p/2)
a,p=1

— 3", (0 + B /2)]. (10)

i.e., the intrawire interactions of the 4nth quantum wire lead to
a fully gapped bulk, and a nontrivial 2D (Cy x ZI')-symmetric
HOTSC with spinless fermions is described by 1D coupled
quantum wires with Lagrangian Eg?l =Lo+ Lyan + Les +
Lin. Similar for the £.,- and £ 3-dominant phases, there are
four topologically distinct phases for a 2D BDI-class (C4 x
ZY)-symmetric system (see Fig. 2). The interacting nature of
these topological phases is reflected by interwire interactions
L. and intrawire interactions near the C; center, L;,. The
classification of a 2D class-BDI HOTSC is Z4, composed of
phases dominated by interwire couplings L (k = 1, 2, 3, 4).

The coupled-wire construction is not limited to supercon-
ductors, but it is also applicable to topological insulators: the
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phase-3, L.3 dominates phase-4, L.4 dominates

FIG. 2. Four distinct phases of a 2D BDI-class (Cy x Z1)-
symmetric system. Each of the four 1D wires with narrower intervals
can be gapped by interwire interactions L, and the 1D wire near the
C, center can be gapped by intrawire interactions L.

only difference is that the Luttinger liquid Eq. (1) should
respect the U (1) charge conservation.

Imposition of lattice translation. With point group sym-
metric cases, using a D4-symmetric class-D example, we
demonstrate that the imposition of lattice translation sym-
metry is straightforward: We impose the lattice translation
to Dy leads to the p4mm wallpaper group. We arrange eight
quantum wires near each D, center (four vertical and four
horizontal—see Fig. 3), where different topological phases
are also controlled by patterns of interwire couplings: The
topologically trivial phase is dominated by £ (black double
arrows in Fig. 3), and the nontrivial phase is dominated by
L, (red double arrows in Fig. 3) and L, at each Dy center in
order to the fully gapped bulk.

Quantum phase transition of HOTSC. The coupled-wire
picture serves as a unique platform for investigating the quan-
tum phase transition (QPT) of 2D HOTSCs because of its
clear formulations. In this section, we elucidate the QPT of
a 2D intriguing interacting D4-symmetric HOTSC as a rep-
resentative example. Consider the D4-symmetric Lagrangian
Lo+ Lo + Lo + Line, where above we have discussed two
extreme cases with m; = 0/mp = 0, derived two distinct
phases characterized by the appearance of Majorana corner
modes on the edge (first quantum wire). Now we suppose
m = 10m, and set both m; and m; finite and study the possible
QPT by tuning their ratio m,/m,. As summarized in Fig. 4,
when we turn on my in the m; < m regime, the system re-
mains fully gapped with a narrower gap; at m; = m,, the gap
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FIG. 3. Coupled wires of a 2D pd4mm-symmetric class-D
HOTSC. Each “@)” symbol depicts a center of Dy, each line (hor-
izontal or vertical) depicts a quantum wire, and each dot depicts a
domain wall described by E'\’;mn. Red and black double arrows depict
different interwire couplings £, and L.

closes and the system becomes critical; as we keep increasing
my toward the my > m; regime, the system reopens a bulk
gap but leaves several gapless modes on the edge, which are
exactly the Majorana domain walls of a 1D quantum wire on
the edge. Therefore, we conclude that there is a clear quantum
phase transition from a trivial state to a 2D Ds-symmetric
HOTSC at the m; = m, point. Equivalently, this quantum
phase transition is characterized by different interwire entan-
glement patterns of 1D quantum wires, as illustrated in Fig. 5.

For a 2D C4-symmetric class-BDI system, the quantum
phase transitions can be described in a similar way with little
complications. For this case, there are four distinct phases
controlled by four different parameters m; ;34 (see Fig. 2).
As an example, for the quantum phase transition between
phase 2 and phase 3, we set m; = my = 0 and investigate
the bulk gap by tuning the ratio m;/ms3. Heuristically, we
see that the system will be critical for m, = ms, hence there
will be a quantum phase transition at this point [90]. As a
matter of fact, distinct phases of 2D HOTSC are controlled
by different patterns of interwire entanglements, and their
quantum phase transitions can be manipulated by tuning the
intensities of different types of interwire couplings. In other
words, a coupled-wire construction provides a straightforward
way of comprehending the quantum phase transitions of 2D
HOTSCs, by tuning the interwire couplings to control the

2.5
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FIG. 4. Bulk gap of 2D D4-symmetric Lagrangian £y + L. +
Lo + Liy, with respect to the ratio m, /m; .
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FIG. 5. Quantum phase transition of a 2D D,-symmetric
HOTSC, with respect to m, — m,. Each pair of quantum wires with
narrower intervals is coupled.

patterns of interwire entanglement. Different phases are man-
ifested by different numbers of Majorana zero modes at each
pole of the outermost quantum wire.

Experimental implications. In this Letter, the explicit man-
ifestations of second-order modes on the edges of the systems
by domain-wall structured quantum wires serve as a di-
rect opportunity for observing the higher-order topological
phases by tunneling spectroscopic measurements. Recently,
the coupled-wire picture was straightforwardly manifested in
two-dimensional moiré superlattices [91,92]. In particular, in
Ref. [92], one-dimensional Luttinger liquid behavior has been
explicitly observed in a 2D bilayer WTe, moiré superlattice
by direct transport measurements. Hence our approach can be
applied directly to moiré superlattices.

Conclusion and discussion. The coupled-wire construction
is a celebrated aspect in topological phases of quantum matter,
for both long-range and short-range entangled systems. In
this Letter, we establish the coupled-wire construction of a
2D intriguing interacting fermionic crystalline HOTSC, with
two representative examples: 2D Dy-symmetric class-D and
C4-symmetric class-BDI HOTSC phases. An indispensable
advantage of the coupled-wire construction is that the power-
ful bosonization technique can be utilized, and the interwire
couplings can be straightforwardly involved by many-body
backscattering terms in the Lagrangian. With this advantage,
we use a 1D nonchiral Luttinger liquid with a domain-wall
structured mass term as an “almost gapped” 1D quantum wire.
Based on these quantum wires, we introduce some suitable
interwire couplings in order to gap out the bulk by assemblies
of quantum wires. The remaining ungapped quantum wires
on the edge are treated as the edge theory of 2D HOTSCs.
Near the center of the point group, the ungapped quantum
wires are gapped by interactions of bosonic fields at different
places. The lattice translation symmetry can be straightfor-
wardly imposed. Distinct HOTSCs are manifested by different
patterns of interwire entanglement. Furthermore, the concrete
coupled-wire constructions serve as a straightforward way to
comprehend the quantum phase transitions of 2D HOTSCs,
by directly tuning the interwire couplings to control the in-
terwire entanglement patterns. The coupled-wire construction
can also be generalized to the systems with arbitrary crys-
talline symmetry SG and internal symmetry Gy in arbitrary
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dimensions, and especially in 2D moiré superlattices, with
more complicated interwire entanglement patterns, and their
quantum phase transitions should also be controlled by the
interwire entanglement patterns of the quantum wires. Fur-
thermore, with explicit corner modes, the 2D HOTSC may be
directly justified by tunneling spectroscopic measurements on
the edge.
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