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Preformed Cooper pairs in flat-band semimetals

Alexander A. Zyuzin 1 and A. Yu. Zyuzin2

1Department of Applied Physics, Aalto University, FI-00076 AALTO, Finland
2Ioffe Physical–Technical Institute, 194021 St. Petersburg, Russia

(Received 8 October 2021; accepted 6 July 2022; published 19 July 2022)

We study conditions for the emergence of the preformed Cooper pairs in materials hosting flat bands. As
a particular example, we consider a semimetal, with a pair of three-band crossing points at which a flat band
intersects with a Dirac cone, and focus on the s-wave intervalley pairing channel. The nearly dispersionless
nature of the flat band at strong attraction between electrons promotes local Cooper pair formation so that the
system may be modeled as an array of superconducting grains. Due to dispersive bands, Andreev scattering
between the grains gives rise to the global phase-coherent superconductivity at low temperatures. We develop
a mean-field theory to calculate transition temperature between the preformed Cooper pair state and the phase-
coherent state for different interaction strengths in the Cooper channel. The transition temperature between
semimetal and preformed Cooper pair phases is proportional to the interaction constant, the dependence of the
transition temperature to the phase-coherent state on the interaction constant is weaker.
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In condensed-matter systems the nearly dispersionless
flat-band electronic structure may stimulate the interaction-
induced instabilities. Of particular interest is the interplay
between flat band and superconductivity. The reason for that
is the relatively large value of the superconducting transi-
tion temperature, which can be linearly proportional to the
pairing interaction strength as was proposed by Khodel’ and
Shaginyan [1] and later studied for instance in Refs. [2–7].

The examples of flat-band systems include multilayer
graphene with rhombohedral stacking [4], interfaces between
the domains in graphene with Bernal stacking order [8],
twisted bilayer graphene [9,10], and semimetals with integer
pseudospin quasiparticles [11–13]. The latter is characterized
by the existence of multiple-band crossing points at which
the flat band intersects with the Dirac cones. For example,
the low-energy electron excitations can be described by the
Hamiltonian for a pseudospin-one particle, see Ref. [13].

Recently superconductivity has been observed in twisted
bilayer graphene [14] and in Bernal bilayer graphene sub-
ject to applied perpendicular electric field [15]. Signatures
of superconductivity have been observed in highly oriented
pyrolytic graphite [8,16]. Although, the semimetals hosting
three-band touching points (and among them CoSi and RhSi)
have been discovered [17–19] (see Ref. [20] for a review) and
several flat-band enhanced Cooper pairing channels have been
explored theoretically [5,21], superconductivity has not been
detected yet. Despite intensive research, the role of flat band
in the Cooper pairing is far from being understood [16].

We emphasize that the effect of the flat band on the for-
mation of superconductivity can be twofold. On one hand, the
strong enhancement of the electronic density of states leads to
higher critical temperatures of Cooper pairing. On the other,
its nearly dispersionless nature can be a serious impediment
to pair condensation. The flat band favors the localization of
quasiparticles, which suppresses the superconducting phase

stiffness. It works against the long-range coherence leading
rather to a situation with preformed Cooper pairing [22].

The problem of flat-band induced correlations between
the Cooper pairs was analysed in Ref. [23]. The flat-band
contribution to superconducting phase stiffness was shown
to be finite and originate from the position-dependent ma-
trix structure of the respective wave function. It is now
believed that this contribution might eventually support the
pair condensation. However, we argue that Ref. [23] over-
looks superconductivity and deals with the preformed Cooper
pair phase and the properties of the local pairs. In this the-
ory, the flat-band contribution to phase stiffness results in
narrow-range spatial correlations on the scale of the size of
the preformed Cooper pair itself. Instead, we expect different
situation, in which local Cooper pairs coexist with the Fermi
liquid.

In our context, however, the Cooper pair formation and
their condensation occur at different temperatures [24,25].
In contrast to the previous research [1–7], we emphasize
the importance of both localized and delocalized quasipar-
ticles on the emergence of superconductivity. In addition to
the flat band, materials inevitably host dispersive bands as
well, which essentially contribute to the pair condensation.
Such situation exists in considered three-band semimetal.
We note that our theory might be extended to explain su-
perconductivity in bilayer graphene with twisted and Bernal
stacking.

We show that with the increase of electron-electron attrac-
tion, the system reaches a state, which can be modeled by an
emergent granularity. It can be described by the Cooper pairs
localized inside the grains lacking the long-range coherence.
The superconducting order parameter exhibits strong spatial
fluctuations. The long-ranged Andreev coupling between the
grains, thanks to the contribution of dispersive bands, estab-
lishes a coherent state at a lower temperature. We develop
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FIG. 1. Schematics of the band structure E (k) in the vicinity of
two three-band-touching points at chemical potential μ. There are
two points at which Dirac cones and flat bands intersect. Supercon-
ducting pairing of electrons from different valleys is considered.

a mean-field theory to calculate the temperatures of Cooper
pairs formation and their consecutive condensation.

Model of semimetal. We consider a time-reversal symmet-
ric semimetal with a pair of three-band crossing points at
momenta ±KD in the first Brillouin zone as shown schemat-
ically in Fig. 1. As we ignore the single-particle intervalley
scattering processes, the model Hamiltonian can be repre-
sented via a sum of two independent contributions from
two valleys [13]: H = ∫

k

∑
s=± �

†
s,kvFS · k�s,k, where vF

is the Fermi velocity, k is the momentum measured rel-
atively to the ±KD with k � KD,

∫
k(..) ≡ ∫

dk
(2π )3 (..), and

S = (Sx, Sy, Sz ) are the Gell-Mann matrices acting on “which
band” pseudospin degree of freedom; see the Supplemental
Material [26]. The electron operators are defined by �s,k =
[�s,+1,k, �s,0,k, �s,−1,k]T , where indices ±1, 0 correspond to
three different bands, two of which are dispersive, E±1 =
±vFk, and another is flat, E0 = 0. The latter is considered
in the infinite mass limit approximation, so that higher or-
der momentum corrections are neglected. We will be using
h̄ = kB = 1 units throughout the paper.

To analyze superconducting instability in the system, we
introduce electron Green’s function in Matsubara represen-
tation G(r, iω) = ∫

k G(k, iω)eik·r, where ω = (2n + 1)πT is
the Matsubara frequency at temperature T . The Green’s
function G(k, iω) = (iω − vFS · k + μ)−1 can be expressed
as [26]

G(k, iω) = 1 − (Snk )2

iω + μ
+ 1

2

∑
s=±1

(Snk )2 + s(Snk )

iω + μ − svFk
, (1)

where μ is the chemical potential and nk = k/k is a unit vec-
tor in the direction of momentum. The chemical potential can
be positive or negative, although we choose it to be positive
since it does not change our result. Attention shall be paid
to the case of finite flat-band dispersion corrections, which
violate the particle-hole symmetry [5]. We will comment on
that later in the conclusions.

The first and second terms in (1) describe contributions
of the flat and dispersive bands, which can be separated
into the local and nonlocal terms as G(r, iω) = Gloc(r, iω) +
Gnl(r, iω), respectively. The local contribution is given by

Gloc(r, iω) = 1

iω + μ

{
δ(r) + 1

4πr3
[3(Snr )2 − S2]

}
, (2)

where now nr = r/r is the unit vector in coordinate space and
δ(r) is the Dirac delta function in three dimension. The second
dipole-like term decays as a cube of distance smearing the
delta function. In the limit of r → 0 the Green’s function is
cut by the interatomic distance. We also note that the spatial
and frequency dependent parts are separated in the flat-band
model in the infinite mass approximation.

It suffices to consider the nonlocal term in the limiting case,
where μ � |ω| and μr/vF � 1,

Gnl(r, iω) = −μ(Snr )

4πv2
Fr

[sgnω + (Snr )]e− r
vF

(ω−iμ)sgnω
. (3)

The expected three-dimensional spatial coordinate depen-
dence is supplemented by the unusual matrix structure. Let
us now discuss superconductivity in flat-band semimetal.

Model of superconductivity. We consider s-wave su-
perconducting instability in the flat-band semimetal taking
three-band semimetal as a particular example [5]. However,
we note that our results are generally valid for systems
with coexisting dispersive and nearly flat bands. The sym-
metry analysis of the superconducting channels in three-band
semimetal was performed in Refs. [5,21]. Specifically, for
clean systems possessing time-reversal symmetry, it was
found that the flat band enhances intervalley Cooper pairing
with total pseudospin S = 0. The intervalley contribution to
the interaction between electrons is given by [26]

U = −λ
∑
α,β

∫
k,k′

(�†
1,α,k�1,α,k′ )(�†

−1,β,−k�−1,β,−k′ ), (4)

where λ > 0 is the interaction constant. We seek for the case
in which flat-band significantly contributes to superconductiv-
ity. Among many possible superconducting states we focus on
the s-wave intervalley odd pairing [5,21]. The pairing chan-
nels can be distinguished by the total pseudospin S of Cooper
pairs. In our case, one can only have even S = 0 and S = 2
due to the Pauli principle. We focus on the S = 0 channel,
which has the highest superconducting transition temperature.
The extended analysis of superconducting states for S = 2
in the model, which takes into account quadratic momen-
tum corrections to the single-particle Hamiltonian, can be
found in [27].

Let us now qualitatively estimate the superconducting ver-
tex part describing Cooper instability,

det[1 − λ	(q)] = 0, (5)

where 	(q) = T
∑

ω

∫
k G(k, iω)[G(q − k,−iω)|S→−S] and

summation is performed over the Matsubara frequencies. Due
to the local term in Green’s function (2), the integrand in
	(q) diverges at large wave vectors. And it is convenient to
single out nonlocal contributions (3), which contain the usual
logarithmic ultraviolet cutoff. All in all, we separate local and
nonlocal contributions 	(q) = 	loc(q) + 	nl(q) and neglect
crossed terms between them (as we are interested in the two
limiting cases only).

Consider momentum expansion of the vertex part 	(q) ≈
	 + q2δ	, where the second term describes superconduct-
ing stiffness. The contribution of the local term in Green’s
function (2) to the superconducting vertex part 	loc ∼
(K3/μ)th(μ/2T ) is proportional to the volume of the flat band
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FIG. 2. The phase diagram of doped semimetal, preformed
Cooper pair, and phase-coherent states as a function of the interaction
constant λ (normalized by the critical value λc) and temperature
T (normalized by the chemical potential μ). The transition tem-
perature Tp is linearly proportional to the interaction constant at
λ/λc � 1. Low-temperature curves describe the boundary of the
phase-coherent state. Here the increase of dimensionless parameter
λcνnl/3 = (0.05, 0.1, 0.2) increases Tc. The tricritical point is shown
for a single parameter only.

in momentum space K3 ≡ ∫
k. Using (3) and assuming μ �

|ω|, a straightforward calculation results in the nonlocal term
	nl ∼ μ2 ln(μ/T )/v3

F. Let us compare two terms at μ > T ,

	loc

	nl
∼

(
K

pF

)3

∼ 1

VG p3
F

, (6)

where we introduced an effective volume VG ∼ K−3. Let us
compare the momentum dependent corrections to the vertex
parts as well. Taking δ	loc ∼ (K/μ)th(μ/2T ) and δ	nl ∼
μ2/(T 2vF), we estimate

δ	loc

δ	nl
∼

(
T

μ

)2

(VG p3
F)−1/3. (7)

At K � pF, we may adopt a model of a granular system, in
which each grain hosts a Cooper pair. The typical volume of
the grain is of the order of VG.

In this limit, at large interaction constant the local contri-
bution 	loc determines the instability towards the Cooper pair
formation. The dispersionless nature of the flat band prevents
establishing global coherence in the system. It rather leads
to phase fluctuations of the order parameter on the scale of
the size of the grain. Although, by lowering the temperature,
see Fig. 2, one may reach a situation, in which the global
coherence is fulfilled by long-range coupling between the
grains.

Ginzburg-Landau functional. To proceed, we will analyze
the superconducting instability within the Ginzburg-Landau
(GL) functional framework in the static approximation [25].
We assume that the semimetal can be fragmented into a
matrix of grains with equal volumes VG and consider the
situation in which the phase of the order parameter �i (where

index i labels the grain) varies from grain to grain, while
its amplitude is grain independent. In this model, the
system is described by the Bogoliubov-deGennes (BdG)
Hamiltonian H = ∑

i

∫
VG

dr�†
i (r)Hi(r)�i(r), where integra-

tion is performed over the volume of the grain VG [26],

Hi(r) =
[−ivFS · ∇ − μ �i(r)

�∗
i (r) ivFS · ∇ + μ

]
, (8)

and the Gorkov-Nambu operator on grain i is given by
�i(r) = [�T

1,i(r), γ�∗
−1,i(r)]T . Here a unitary operator γ =

eiπSy transforms the spin-1 operators as γ †S∗γ = −S [5].
It resembles the antisymmetric property of the spin-matrix
structure of the gap function in usual superconductors. Note
that we neglect single-particle intervalley scattering pro-
cesses, which results in the 6 × 6 matrix structure of BdG
Hamiltonian (similarly to the 2 × 2 matrix structure reduction
of the BdG Hamiltonian in usual superconductors).

In the limit of small gap function |�i| � μ, the GL
functional can be further expanded in powers of the order
parameter. In this expansion, the superconducting phase stiff-
ness consists of contributions from both local and nonlocal
terms in the Green’s function (1). Although noting (7), the for-
mer is smaller compared to the nonlocal contribution, which
allows us to neglect variation of the order parameter inside the
grain and focus on the intergrain coupling only.

Taking into account both local (2) and nonlocal (3) contri-
butions, the GL functional yields [26]

F =
∑

i

Fi −
∑
i 
= j

Fi, j ≡ VG

∑
i

{
a|�i|2 + b

2
|�i|4

}

− νnl

2vF
V 2

GT
∑

ω

∑
i 
= j

e− 2|ω|
vF

|ri−r j |

|ri − r j |2 |�i� j | cos(φi j ), (9)

where a = 3(λ−1 − λ−1
c th μ

2T ) and b = 3λ−1
c (sh μ

T −
μ

T )/(4μ2ch2 μ

2T ) are the model dependent coefficients. We
consider the case when the chemical potential μ is smaller
than the Debye frequency. It also suffices to introduce a
critical value of interaction constant λc = 6μ/K3. The last
term in (9) describes long-range Andreev coupling between
the grains, which is weighted by the density of states per
valley at the Fermi energy νnl = μ2/(2π2v3

F). To obtain this
term one follows familiar microscopic derivation within the
GL formalism [28]. Note that the Andreev term is smaller
than the second term in the coefficient a. The latter is defined
by the flat-band contribution. We neglect weak corrections
from delocalized states to the coefficient a within the granular
model. Andreev coupling contributes to quartic terms in
general form ∝ �i� j�

∗
k�

∗
� , although these terms are small

compared to b|�i|4 in (9).
Consider a situation in which weak Andreev coupling

between the grains can be neglected. At a < 0, from the
extremum of (9), we obtain nonzero local |�i| with random
phase. We identify this case as preformed Cooper pair phase.
In this case, equation a = 0 determines the temperature of
preformed Cooper pair formation on the grain.

Provided λ � λc one obtains Tp = μ/2arcth(λc/λ) [5].
This is the temperature of the phase transition between
a doped semimetal and preformed Cooper pair state. The
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low-doping case μ � T requires large interaction constant
λ/λc � 1 for the transition. Here the critical temperature is
proportional to the interaction constant and inversely pro-
portional to the volume of preformed Cooper pair Tp =
λK3/12 [3–6].

At high doping μ � T , the transition takes place when
the interaction constant is larger than the critical value λ �
λc [24]. In this limit the coefficients in (9) can be simplified
as a = 3(λ−1 − λ−1

c ) and b = 3/(2μ2λc). We shall focus on
this case in what follows. Let us now calculate the transition
temperature to the phase-coherent state, which is driven by the
Andreev coupling.

Transition between preformed-pair and phase-coherent
states. With the increase of interaction constant λ, the im-
pact of dispersive bands enhances Andreev coupling between
the superconducting grains. As a result, the system may
reach the phase coherence. In what follows, we develop a
mean-field theory to calculate the superconducting transition
temperature.

Within the mean-field approach, the fluctuating values
of the order parameter �i are replaced by an average or-
der parameter 〈�〉 [25,26]. The self-consistent mean-field
equation is

〈�〉 =
∫
D�D�∗�0e−F/T∫
D�D�∗e−F/T

≈
∫

d�d�∗�e−FMF /T∫
d�d�∗e−FMF /T

, (10)

in which D� ≡ 	id�i. The mean-field functional reads

FMF = F0 −
∑
i 
=0

Fi,0

= VG

[
a|�|2 + b

2
|�|4 − c(〈�〉�∗ + 〈�∗〉�)

]
. (11)

In the continuum limit, we substitute
∑

i 
=0 = V −1
G

∫
V dr and

obtain coefficient c = νnl ln |μ/T | within the logarithmic ac-
curacy.

Without loosing the generality, the averaged order pa-
rameter 〈�〉 can be restricted to real value. At c〈�〉 �√|a|T/VGmax(1, bT/a2VG), expanding integrands in Eq. (10)
in powers of 〈�〉, we obtain

1 = νnl
VG〈|�|2〉

T
ln

∣∣∣μ
T

∣∣∣, 〈|�|2〉 =
∫ ∞

0 dxxe− VG
T (ax+ b

2 x2 )

∫ ∞
0 dxe− VG

T (ax+ b
2 x2 )

.

(12)

The solution to Eq. (12) is shown in Fig. 2. Analytical expres-
sions can be analysed in several limiting cases.

First, consider a situation in which the interaction con-
stant λ is much smaller the critical value, λ � λc, so that
�i = 0 (a > 0). In this weak-coupling regime, the bx2 term
in formula (12) can be neglected provided a2VG/bT � 1.
Performing integration in (12) one obtains expression for
the square of quasiparticle energy gap 〈|�|2〉 ≈ T/aVG. As
a result, the transition temperature to the coherent state is
given by

Tc = μ exp

{
− 3

λνnl
(1 − λ/λc)

}
. (13)

This mean-field solution coincides with the exact BCS expres-
sion. The flat band gives 1 − λ/λc enhancement correction in
the exponent.

Second, consider a semimetal at the vicinity of the transi-
tion to preformed Cooper pair phase, λ ≈ λc. At a2VG/bT �
1, we can neglect a term compared with the nonlinear b
term in (12) and obtain 〈|�|2〉 ≈ √

2T/πbVG. Taking into
account VGK3 ≈ 1 and using expressions for λc and b,
we find

Tc = 2μ

9π
(λcνnl ln |μ/Tc|)2. (14)

This result is valid for both signs of the coefficient a. Due to
λcνnl < 1, the Tc is proportional to the critical value of the
interaction constant squared.

Third, consider the preformed Cooper pair phase, λ � λc.
For weak fluctuations a2VG/bT � 1, using 〈|�|2〉 ≈ −a/b =
2μ2(1 − λc/λ), we obtain

Tc = λcνnl

3
μ

(
1 − λc

λ

)
ln

∣∣∣ μ

Tc

∣∣∣. (15)

The transition temperature increases with the increase of λ.
However, in the limit of λ � λc, the GL expansion is no
longer valid. The investigation of this case deserves a separate
study.

Conclusions. Let us now briefly comment on the effect of
finite ∝ k2 corrections to the Hamiltonian of semimetal. In
this case, the flat band acquires a finite curvature. As noted in
Ref. [5] accounting for such term results in vanishing of the
threshold value λc, which is required for preformed Cooper
pairing, provided the chemical potential crosses the band.
Hence, enhancement of the transition temperature Tc (13) at
smaller values of the interaction constant λ → 0 is expected
for particular doping, which depends on the sign of ∝ k2

correction term. We also note that materials may contain other
dispersive bands, which can coexist with the Dirac cones at the
chemical potential, and contribute to the long-range coupling
as well.

It would be interesting to extend the above-presented
research to explain superconductivity in twisted bilayer
graphene [14] and in graphite with Bernal stacking order [8].
The moiré pattern can be modeled as a system of coupled
grains [29]. We argue that in this situation the intergrain
coupling leads to the phase-coherent state at temperatures
lower than the temperature of the on-grain Cooper pair for-
mation. We will consider superconductivity in twisted bilayer
graphene in future work.

To conclude, in this paper we have demonstrated that a
nearly dispersionless flat band at strong attraction between
electrons manifests itself in the emergent granularity and the
Cooper pair preformation. The dispersive bands, which co-
exist with the flat bands, promote the global phase-coherent
superconducting state at low temperatures. We have calcu-
lated the temperature of the phase transition between the
preformed pairs and phase-coherent states in a semimetal
hosting a pair of three-band crossing points. Experimentally,
the preformed Cooper pairs may be probed locally via low-
temperature spectroscopy [22].
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