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Origin of the spin-crossover phenomenon in LaCoO3
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The origin of the spin-crossover phenomenon in LaCoO3 is discussed based on the electronic state 5D realized
in a 3d6 system subjected to an intermediate crystal field. We calculate the splitting of the 5D state under a
crystal field whose symmetry is predominantly cubic but with a trigonal distortion. We confine ourselves to
the �5 state and use a fictitious orbital angular momentum l of magnitude one. Eigenvalues of a Hamiltonian
including the spin-orbit interaction −λ′l · S and the trigonal crystal fields 9B0

2(l2
z − 2/3) − 80B0

4(l2
z − 9/10) are

rigorously calculated. A singlet ground state with an energy gap to the excited states is realized for certain values
of the parameters in the Hamiltonian. The magnetization calculated rigorously using the energy levels subject to
a magnetic field accords with published measurements.
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The compound LaCoO3 (abbreviated LCO) has attracted
much attention because of its possibly unique magnetic and
electrical properties [1]. It shows a transition from a metallic
to semiconducting state in the vicinity of 500 K, together with
an anomaly in the magnetic susceptibility χ [2].

An interesting phenomenon awaiting a satisfactory expla-
nation emerges in χ at lower temperatures. The magnetic
susceptibility increases with decreasing temperature and is at
a maximum in the neighborhood of 100 K [3]. Thereafter, χ

decreases with decreasing temperature and begins to increase
again at about 35 K [3]. Since the increase in χ below ∼35 K
comes from magnetic impurities [4], LCO is considered to
be in a nonmagnetic state at low temperatures, apart from the
temperature-independent paramagnetism found in the nuclear
magnetic resonance measurements [4].

Several attempts to interpret the origin of the transition
from the nonmagnetic to magnetized states at a temperature
�100 K, named the spin-crossover phenomenon, have been
made [1]. To begin with, 3d orbital states of a trivalent cobalt
ion (3d6) in an octahedral crystal field split into a lower triplet
(�5 symmetry type) and upper doublet (�3). In the case of a
strong crystal field [5], the six 3d electrons are accommodated
in the �5 state with three up- and three down-spins, resulting
in a nonmagnetic state. In an intermediate crystal field [5],
however, Hund’s rules predominate and the ground state of a
3d6 system is a 5D with a total angular momentum L = 2 and
total spin S = 2 [5].

Most interpretations on the origin of the spin-crossover
phenomenon have used the first scenario mentioned above.
Progress to a plausible model requires intermediate-spin (IS)
and high-spin (HS) states, in addition to the nonmagnetic
[low-spin (LS)] one, to explain the temperature-dependent
magnetism of LCO [1]. There is no consensus on which com-
binations of LS, IS, and HS states best describe the magnetic
properties of LCO. In this Letter, we present an interpretation
based on the second scenario for 3d states that possesses many
attractive features, not least its relative simplicity.

Inomata and Oguchi (IO) calculated [6] the magnetic prop-
erties of FeCl2 · 2H2O with a crystal field of intermediate
strength, and their findings apply to LCO since the ferrous
ion Fe2+ and Co3+ possess the atomic configuration 3d6. A
5D state splits into �5 and �3 with an energy separation,
typically ∼104 cm−1 in an octahedral crystal field [5], much
larger than room temperature (300 K � 200 cm−1). Within
the assumed �5 ground state we may use a fictitious orbital
angular momentum l of magnitude one [7,8] related to the
total angular momentum L by [8]

L = −l . (1)

The corresponding effective 5D Hamiltonian [6]

HIO = −λ′l · S − �
(
l2
z − 2/3

)
(2)

includes spin-orbit coupling and a tetragonal distortion with
strengths λ′ and �, respectively. Although not stated explic-
itly, IO have shown [6] the possibility of a singlet ground state
with an energy gap to excited states for a 5D system under a
tetragonal crystal field. Likewise, Kadwański and Ropka [9]
made a computer calculation on a 5D system subjected to a
crystal field and realized a singlet ground state.

The crystal structure of LCO is rhombohedral with space
group R3̄c below room temperature [10]. Bull and Knight
[11] performed a high-resolution neutron diffraction measure-
ment on this material. Their results show that with decreasing
temperature the CoO6 octahedra rotate about the rhombohe-
dral [111] axis, and that the octahedra are distorted. In the
following, we calculate the splitting of the 5D state under a
crystal field whose symmetry is predominantly cubic but with
a trigonal distortion. The Hamiltonian describing the crystal
field of trigonal symmetry is given by [5]

Hcrys = B0
2O0

2 + B0
4O0

4, (3)

where B0
2 and B0

4 are the magnitudes of the crystal field and
O0

2 and O0
4 are the equivalent operators. Here, the axis of
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quantization z is taken parallel to a line drawn from the center
through the midpoint of one of the faces of the octahedron [5].

The basis functions belonging to the �5 state are given by
[5]

|1̃〉 =
√

1/3{
√

2| − 2〉 − |1〉}, (4)

|0̃〉 = |0〉, (5)

and

| − 1̃〉 = −
√

1/3{
√

2|2〉 + | − 1〉}. (6)

For the �3 state, the basis functions are

|+̃〉 =
√

1/3{| − 2〉 +
√

2|1〉}, (7)

and

|−̃〉 =
√

1/3{|2〉 −
√

2| − 1〉}. (8)

In Eqs. (4)–(8), |2〉, |1〉, |0〉, | − 1〉, and | − 2〉 are the basis
functions belonging to the 5D state. These two sets of basis
functions are related by the following transformation R,

R =

⎛
⎜⎜⎜⎜⎝

0 −√
1/3 0 0

√
2/3

0 0 1 0 0
−√

2/3 0 0 −√
1/3 0

0
√

2/3 0 0
√

1/3√
1/3 0 0 −√

2/3 0

⎞
⎟⎟⎟⎟⎠

. (9)

The z component of L transforms as

RLzR
−1 =

⎛
⎜⎜⎜⎜⎝

−1 0 0 −√
2 0

0 0 0 0 0
0 0 1 0 −√

2
−√

2 0 0 0 0
0 0 −√

2 0 0

⎞
⎟⎟⎟⎟⎠

. (10)

The matrix elements for L+ and L− are obtained similarly.
The upper left 3 × 3 submatrix in Eq. (10) belongs to the
�5 representation, which results in Eq. (1). The lower right
2 × 2 submatrix belongs to the �3. We see that the elements
of this 2 × 2 submatrix are zero. This means that the orbital
moment exists predominantly in the �5 state. Therefore, we
may assume that the spin-orbit interaction energy 〈λL · S〉
between the real orbital moment and spin is the same as that
in the �5 state given by 〈−λ′l · S〉. The maximum value of
〈λL · S〉 is given for Lz = 2 and Sz = 2 resulting in 〈λL · S〉 =
4λ. Similarly, the maximum value of 〈−λ′l · S〉 is 2λ′ when
lz = −1 and Sz = 2. From this consideration, we have

4λ = 2λ′. (11)

The matrix elements of O0
2 and O0

4 in Eq. (3) are given in
[5]. These operators transform as

RO0
2R−1 = R

⎛
⎜⎜⎜⎝

6 0 0 0 0
0 −3 0 0 0
0 0 −6 0 0
0 0 0 −3 0
0 0 0 0 6

⎞
⎟⎟⎟⎠R−1

=

⎛
⎜⎜⎜⎜⎝

3 0 0 3
√

2 0
0 −6 0 0 0
0 0 3 0 −3

√
2

3
√

2 0 0 0 0
0 0 −3

√
2 0 0

⎞
⎟⎟⎟⎟⎠

(12)

and

RO0
4R−1 = R

⎛
⎜⎜⎜⎝

12 0 0 0 0
0 −48 0 0 0
0 0 72 0 0
0 0 0 −48 0
0 0 0 0 12

⎞
⎟⎟⎟⎠R−1

=

⎛
⎜⎜⎜⎜⎝

−8 0 0 20
√

2 0
0 72 0 0 0
0 0 −8 0 −20

√
2

20
√

2 0 0 −28 0
0 0 −20

√
2 0 −28

⎞
⎟⎟⎟⎟⎠

.

(13)

We see from Eqs. (12) and (13) that we may write the
crystal field Hamiltonian Eq. (3) in an operator form as

Hcrys = 9B0
2

(
l2
z − 2/3

) − 80B0
4

(
l2
z − 9/10

)
. (14)

The total Hamiltonian H we study here is given by

H = −λ′l · S + 9B0
2

(
l2
z − 2/3

) − 80B0
4

(
l2
z − 9/10

)
. (15)

Since lz + Sz commutes with the Hamiltonian [Eq. (15)],
its eigenvalue m can be used to classify the states. We denote
the states by |lz, Sz〉, where lz and Sz take three and five states,
respectively.

For m = 3,

E3 = 〈1, 2|H|1, 2〉 = −2λ′ + δ − ε, (16)

where δ ≡ 3B0
2 and ε ≡ 8B0

4.
The next eigenstate, m = 2, is a linear combination of

|1, 1〉 and |0, 2〉. In this case, we have a 2 × 2 secular deter-
minant from which we obtain

E2 = −λ′/2 − δ/2 + 4ε

±1

2

√
9(λ′)2 − 6λ′δ + 20λ′ε + 9δ2 − 60δε + 100ε2.

(17)

When m = 1, we have the following cubic equation for the
eigenvalues E1,

E3
1 − (2λ′ + 7ε)E2

1

−{3δ2 + 17ε2 + 5(λ′)2 − 20δε + 2δλ′ − 16ελ′}E1

+{4δ2λ′ − 22δελ′ + 18ε2λ′ + 6(λ′)3 + 2δ3 − 13δ2ε

+ 20δε2 + 5δ(λ′)2 − 5ε(λ′)2 − 9ε3} = 0. (18)

The solutions of Eq. (18) are obtained with Mathematica in an
analytical form. Lastly, the m = 0 state is a linear combination
of |1,−1〉, |0, 0〉 and | − 1, 1〉 with values

E0 = λ′ + δ − ε, (19)
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FIG. 1. The eigenvalues of the Hamiltonian [Eq. (15)] are plot-
ted vs δ(≡3B0

2 ) when λ′ = −410 cm−1 and ε(≡8B0
4 ) = 300 cm−1.

Black: m = ±3. Green: m = ±2. Blue: m = ±1. Red: m = 0. The
inset shows the δ dependence of the lowest- and second lowest-
energy levels.

and

E0 = λ′/2 − δ/2 + 4ε

±1

2

√
25(λ′)2 + 9δ2 − 60δε + 6δλ′ + 100ε2 − 20ελ′.

(20)

Similarly, we obtain the eigenvalues for m = −1, −2, and −3.
The main panel of Fig. 1 shows the 15 eigenvalues of

the Hamiltonian [Eq. (15)] as a function of δ when λ′ =
−410 cm−1 and ε = 300 cm−1. The inset of Fig. 1 depicts
the lowest- and second lowest-energy levels as a function of
δ. We see that the ground state is a singlet (m = 0) with an
energy gap to the first excited state for δ > 1000 cm−1.

Next, we calculate the magnetization M of LCO and com-
pare the result with experiment. For this purpose, we calculate
the eigenvalues under an applied magnetic field. We add the
Zeeman Hamiltonian HZ ,

HZ = μBH (2S − l ), (21)

to Eq. (15), where μB is the Bohr magneton and H is the
applied magnetic field. In this Letter, we consider the case of
H ‖ z.

FIG. 2. The magnetic field dependence of the 15 eigenval-
ues when λ′ = −410 cm−1, δ(≡3B0

2 ) = 1800 cm−1, and ε(≡8B0
4 ) =

300 cm−1. Black: m = ±3. Green: m = ±2. Blue: m = ±1. Red:
m = 0.

We show in Fig. 2 the 15 energy levels as a function of
the applied magnetic field. As is seen in Fig. 2, the energy
levels named E0 through E4 lie about a few hundreds cm−1

below the higher-energy levels. Therefore, we may take only
the low-lying five states to calculate M at low temperatures.

The calculation of M has been performed with the standard
procedure of statistical mechanics. The partition function Z
for the five states is formulated from which the free energy F
is obtained. Then the derivative of F is calculated with respect
to H to obtain M. The expression for M is lengthy and so we
do not present it here.

We compare the results of our calculation with the exper-
iment reported by Sato et al. [12]. The experimental data are
extracted [13] from Fig. 1 of [12]. The inset of Fig. 3 shows
the theoretical and experimental data. Here, we assume that
all the Co ions in the sample are in the 5D state (p = 1.0). In
this case, the agreement between theory and experiment is not
good.

FIG. 3. The magnetic field dependence of the magnetization of
LaCoO3 at T = 4.2 K. Red curve: Theory with the concentration
p = 0.28 of Co atoms in the 5D state. Black dots: Experimental result
reported by Sato et al. [12]. The experimental data are extracted [13]
from Fig. 1 of [12]. The inset shows the theoretical curve with p =
1.0 and the experimental data.
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Not all Co ions in LCO are in the 5D state according to
results for p = 1.0 presented in Fig. 3, and independent in-
formation supports this finding. Goodenough [14] pointed out
that trivalent cobalt under an octahedral crystal field has a low-
spin (CoIII) and a high-spin (Co3+) state of comparable en-
ergy. This suggests that CoIII and Co3+ coexist in LCO. From
a Mössbauer study on LCO, Bhide et al. [15] showed that at
low temperatures, cobalt ions exist predominantly in the CoIII

state and they transform partially to Co3+ ions up to 200 K.
We show in the main panel of Fig. 3 the theoretical curve

with the Co3+ concentration p = 0.28 together with the ex-
perimental data [12]. Here, we have assumed that CoIII ions
are magnetically silent at low temperatures. The agreement
between theory and experiment is satisfactory. The magneti-
zation we calculate here is the one at thermal equilibrium. So,
the hysteretic behavior seen in the pulsed field measurement
is not reproduced. The equilibrium value is considered to lie
between the data taken in increasing and decreasing fields.

The slope in the field dependence of magnetization
observed at low fields originates from the temperature-
independent paramagnetic susceptibility [4], not from mag-
netic impurities. If the slope were due to impurities, its
magnetization saturates at a moderate field following the
Brillouin function and would give a field-independent value.
The temperature-independent susceptibility originates from
the contribution of higher-energy levels [16]. As explained
above, we have considered the five low-lying energy levels
in our calculation. A calculation including the higher-energy
levels will reproduce the slope.

From Fig. 2, we see that the system crosses from the E1

to E3 states at about 290 T, where the magnetization changes.
This theoretical result is consistent with the experiment [17] in
which a two-step magnetization curve is obtained. However, a
quantitative comparison between the theory and the measured
data is not possible, because hysteretic effects are not reported
and we are unable to locate the critical fields in equilibrium.

Since the experimental value of λ of Co3+ ion is not known,
we treat it as an adjustable parameter together with δ and ε.
Dunn has estimated the value of the one-electron spin-orbit
coupling parameter ζnd by the use of extrapolation methods
[18]. For Co3+, ζnd = 580 cm−1, which gives for the 5D state

λ = −ζnd/4 = −145 cm−1. (22)

From Eqs. (11) and (22), we have λ′ = −290 cm−1. In this
Letter, we have chosen λ′ = −410 cm−1, somewhat larger
than −290 cm−1.

Noguchi et al. [19] present a phenomenological energy
level scheme to explain their electron spin resonance (ESR)
data, in which an excited triplet state lies above a singlet
ground state. Evidently, this is not consistent with the energy
level scheme used here (Fig. 1), in which the first excited
state is a doublet. Ropka and Radwanski [20] explain Noguchi
et al.’s energy diagram by introducing a highly excited mul-
tiplet 1I to 5D. Normally, the effects of excited multiplets on
the ground state are small and do not alter the energy level
scheme [21].

We offer an alternative scenario that gives an excited
triplet. In this Letter, we have assumed that CoIII and Co3+

coexist in LCO, the former of which is magnetically silent

FIG. 4. The magnetic field dependence of the 6 eigenvalues
of the Hamiltonian [Eq. (23)] when λ′ = −100 cm−1 and � =
−100 cm−1. Here, m is the eigenvalue of lz + sz.

at low temperatures. Since the ESR measurement [19] was
performed at temperatures between 20 and 70 K, we expect
that a considerable amount of CoIII becomes magnetic. An
elementary excitation from the LS state is to excite one elec-
tron from �5 to �3. This results in a configuration in which
one hole exists at �5 and one electron at �3. We note that
the level splitting is reversed for the hole, i.e., �5 lies higher
than �3. Here, we discuss the hole state with the following
Hamiltonian,

Hhole = −λ′l · s − �
(
l2
z − 2/3

) + μBH (2sz − lz ), (23)

where s is the spin angular momentum of magnitude 1
2 . For

simplicity, we consider the case of a tetragonal crystal field.
Similarly to the preceding discussion, we obtain 6 eigen-

values of Eq. (23) with m = ± 3
2 and m = ± 1

2 . Note that each
of the m = ± 1

2 has two values. Therefore, a quartet (m = ± 3
2

and m = ± 1
2 ) and a doublet (m = ± 1

2 ) exist as shown in
Fig. 4. A relative position between the quartet and doublet
depends on the spin-orbit interaction and the crystal field.
From a simple calculation, it is shown that the quartet lies
above the doublet for (� − 3λ′/2)2 + 2λ′� > 0.

Figure 4 shows the 6 eigenvalues as a function of the
applied magnetic field. We see an upper quartet and a lower
doublet. Since the energy levels with m = ± 3

2 do not depend
on magnetic field, the quartet is regarded as a quasitriplet. ESR
transitions are possible between two states with �m = ±1.
Several ESR signals are expected to be observed between
the energy levels shown in Fig. 4. A quantitative comparison
between the experimental results will be made elsewhere.

The experimental evidence that the concentration of Co3+

in LCO changes with temperature [15] complicates the analy-
sis of the χ (T ) data. This will be discussed elsewhere.

In summary, it is shown that magnetization data on LCO
conform to an intermediate crystal field model with trigonal
symmetry. Satisfactory agreement between theory and avail-
able measurements is achieved with plausible values of the
parameters, which include a spin-orbit interaction.

The author would like to thank K. Asai, C. L. Bull, and
S. W. Lovesey for helpful discussions and comments.
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