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Spin wave driven domain wall motion in easy-plane ferromagnets: A particle perspective
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In easy-plane ferromagnets, we show that the interplay between a domain wall and a spin wave packet can
be formulated as the collision of two massive particles with a gravitylike attraction. In the presence of magnetic
dissipation, the domain wall mimics a particle subject to viscous friction, while the spin wave packet resembles
a particle of variable mass. Due to the attractive nature of the interaction, the domain wall acquires a backward
displacement as a spin wave packet penetrating the domain wall, even though there is no change in momentum
of the wave packet before and after penetration.
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Introduction. Magnetic domain wall motion is widely used
in manipulating the magnetic information for both storage and
processing [1–3], and its understanding is crucial for both
fundamental physics and technological applications [4–6].
Typical approaches to drive the domain wall motion include
the magnetic field [7–9], current-induced spin-transfer torque
[10–13] and spin-orbit torque [14–16], as well as spin waves
[17–26]. Due to the intrinsic magnetic nature, the spin wave
driven domain wall motion is of special interest toward purely
magnetic computing [26–28].

Investigations on the interplay between spin waves and
domain walls are complicated by the fast magnetization os-
cillations of spin waves in both time and space, as well as the
inhomogeneous magnetization of domain walls. To overcome
this complexity, a common and powerful approach is to make
use of linear or angular momentum conservation [28], which
focuses on global momentum transfer and avoids local inter-
action details.

In easy-axis ferromagnets, the spin wave can either drag or
push the domain wall, depending on whether the spin wave is
transmitted or reflected [17–19]. And when extending to an-
tiferromagnetic and ferrimagnetic environments, the direction
of the domain wall motion can be controlled by tuning the spin
wave polarization [21–24] or frequency [25]. The easy-plane
magnet is another important category of magnetic materials,
and is a fertile ground for emerging physics including rela-
tivistic dynamics [29], magnon superfluids [30–32], magnetic
vortices [33,34], and bimerons [35,36]. However, the domain
wall in easy-plane ferromagnets is only studied in limited
cases [37–40], and its motion driven by spin waves remains
elusive.
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In this Letter, we demonstrate that the domain wall in easy-
plane ferromagnets is displaced toward the spin wave source
as the wave passing through the wall, albeit the spin wave
carries the same momentum before and after penetration. By
developing a unified Lagrangian framework, we transform the
interplay between a spin wave packet and a domain wall to
an equivalent collision process between two massive particles
subject to a gravitylike attraction, which greatly simplifies the
wave-soliton interaction scenario and enables a classical yet
intuitive understanding.

Basic model. We consider a one-dimensional ferromag-
netic wire extending along the x axis as shown in Fig. 1(a),
where the magnetization direction (red arrows) is denoted by
a unit vector m(x). We assume that the ferromagnet has a
strong hard-axis anisotropy along the ẑ direction, and thus the
x-y plane is the easy plane. In terms of the z component of
magnetization mz, and the azimuthal angles φ with respect to
the z axis, the magnetization direction is explicitly denoted
by m ≡ (

√
1 − m2

z cos φ,
√

1 − m2
z sin φ, mz ). The magnetic

free energy is E = (S/2)
∫

[K ′m2
z + K sin2 φ + A(∂xm)2]dx,

where K ′ is a strong easy-plane anisotropy favoring the x-y
plane, K � K ′ is a weak easy-axis anisotropy along the x axis,
and A is the exchange coupling constant. Here, S = μ0MsA is
the magnetic flux, where μ0 is the vacuum permeability, Ms is
the saturation magnetization, and A is the cross-section area
of the magnetic wire. The main effect of the dipolar field is
to renormalize the anisotropy constants in exchange regime,
thus is not included explicitly in this Letter.

The Lagrangian of the magnetic system reads [8,39]

L = S

γ

∫
mzφ̇ dx − E, (1)

where the first term is the kinetic energy of magnetic sys-
tem [8], and γ is the gyromagnetic ratio. In addition, the
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FIG. 1. Schematics of the interplay between a spin wave
packet and a magnetic domain wall in easy-plane ferromagnets.
(a) Schematics of the magnetic profile. The red (blue) arrows depict
the magnetizations of a domain wall (spin wave packet), and the
green plane denotes the anisotropy-defined easy plane. (b) Schemat-
ics of the equivalent particle model. The red (blue) ball denotes the
domain wall (spin wave packet), and the green line plots the interac-
tion potential U . (c) Schematics of the forward and backward jumps.
The solid (dashed) lines plot the loci of a heavy and a light particle
during penetration with (without) mutual attraction, and the overall
differences of the two loci indicated by �X and �χ , respectively.

accompanying Rayleigh function accounting for the dissipa-
tion is R = (αS/2γ )

∫
ṁ2dx, with α the Gilbert damping

constant. The Euler-Lagrangian variation of L in Eq. (1) and
the accompanying R with respect to m yields the Landau-
Lifshitz-Gilbert (LLG) equation ṁ = −γ m × h + αm × ṁ,
where h = −S−1δE/δm is the effective magnetic field acting
on magnetization m.

Due to the strong easy-plane anisotropy K ′, the magneti-
zation lies predominatingly in the x-y plane with mz � 0, as
illustrated in Fig. 1(a). Hence, the Lagrangian simplifies to

L = S

2

∫ [
φ̇2

γ 2K ′ − A(∂xφ)2 + K sin2 φ

]
dx, (2)

and the Rayleigh function simplifies to R = (αS/2γ )
∫

φ̇2dx.
Correspondingly, the magnetic dynamics reduces to a damped
sine-Gordon equation on the azimuthal angle φ [29,37–40],

− 1
c2 φ̈ − β

c2 φ̇ = −∂2
x φ + sin 2φ

2W 2
, (3)

where c = γ
√

AK ′ is the effective “speed of light” of the
magnetic system, W = √

A/K is the characteristic magnetic
length (or the domain wall width), and β = αγ K ′ is the dissi-
pation coefficient.

Domain wall and spin wave packet. The dynamics of the
azimuthal angle φ(x, t ) in Eq. (3) can be naturally divided into

the slow dynamics due to the domain wall motion and the fast
dynamics due to the spin wave excitation, i.e., φ = φ0 + φ′.
The clear separation of slow and fast dynamics is ensured
by the high frequency of the exchange-type spin wave under
investigation here, regardless of the hard or soft anisotropy
materials. In the following, we first investigate the dynamics
of φ0 and φ′ separately, and then their interaction caused by
the nonlinearity embedded in the sin 2φ term of Eq. (3).

It is well known that the static domain wall solution hosted
by Eq. (3) has the following soliton form [41,42],

φ0(x, t ) = 2 arctan

[
exp

(
−x − X (t )

W

)]
, (4)

where X is the domain wall central position. The domain wall
profile in Eq. (4) corresponds to the magnetization rotating
steadily from m = −x̂ (φ0 = π ) at x � X to m = +x̂ (φ0 =
0) at x � X , as illustrated in Fig. 1(a). Due to the invariance
of the topological charge [41,42], Q = (1/π )

∫
dφ = −1, the

moving domain wall in Eq. (4) maintains a relatively fixed
shape, hence its evolution is mainly determined by the varia-
tion of its central position X (t ): φ0(t ) ≡ φ0[X (t )].

In the meantime, we consider a spin wave packet in the
Gaussian form,

φ′(x, t ) = 1

k0W

√
2nh̄ω0√
πσSK

e− [x−χ (t )]2

2σ2 cos {k0[x − χ (t )]}, (5)

where n is the magnon number representing the spin wave in-
tensity, σ is the typical width, χ is the central position, and k0

and ω0 are the central wave vector and frequency of the wave
packet. For the exchange-type spin wave under investigation
in this work, we may assume k0W � 1, then the spin wave
packet is narrow in both spatial and wave-vector spaces, i.e.,
σ � W and 1/σ � k0 [43,44]. Hence, the evolution of the
spin wave packet can also be described by the variation of its
central position χ (t ): φ′(t ) ≡ φ′[χ (t )].

Particle collision model. As seen from Eqs. (4) and (5),
both the solitonlike domain wall and the spin wave packet
are reduced to particlelike objects characterized by their po-
sitions: X (t ) for the domain wall and χ (t ) for the spin wave
packet. In terms of these two degrees of freedom, the La-
grangian is recast from Eq. (2) to

L = M
2 Ẋ 2 + m

2 χ̇2 − U, (6)

where the effective masses of the domain wall and spin wave
packet are defined by their static energies as Mc2 = 2SKW
and mc2 = nh̄ω0, respectively. The interaction energy U in
Eq. (6), originated from the sin 2φ term in the sine-Gordon
equation, takes the following attractive gravitylike form,

U = −GMm
sech2[(χ − X )/W ]

2W
, (7)

where G = c4/(SAk2
0 ) is the effective gravitational constant.

This interaction energy U is collaboratively caused by the
inhomogeneous domain wall magnetization and the reduction
of its magnitude by the spin wave [44]. It is noteworthy that
the static energies of the domain wall and spin wave packet
Mc2 and mc2 are omitted in the Lagrangian of Eq. (6) since
they are both constants. Equations (6) and (7) indicate that the
interplay between a domain wall and a spin wave packet in
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easy-plane ferromagnets can be viewed as the collision of two
particles with mass m and M subject to a gravitational-like
attraction of energy U , as illustrated in Fig. 1(b).

Similar to the transformed Lagrangian in Eq. (6),
the Rayleigh dissipation function is transformed to R =
βMẊ 2/2 + βmχ̇2/2, where the dissipation of the domain
wall and spin wave packet share the same coefficient β. Be-
cause of the topological protection, the domain wall profile
in Eq. (4) maintains the same form, regardless of dissipation.
However, the intensity of the spin wave packet in Eq. (5) is
expected to decay due to dissipation. As a result, the domain
wall mass M is a constant of time, but the mass m of the spin
wave packet reduces in the magnetic background, just like an
icy ball dissolving in water.

From the Lagrangian in Eq. (6) and the accompanying
Rayleigh dissipation function, the dynamics of the domain
wall and spin wave packet are then governed by

dP

dt
: MẌ = −∂U

∂X
− βMẊ , (8a)

d p

dt
:

{
mχ̈ = − ∂U

∂χ
,

ṁ = −βm,
(8b)

where Eqs. (8a) and (8b) describe the evolution of the domain
wall momentum P ≡ MẊ and the momentum of the spin wave
packet p ≡ mχ̇ , respectively. In the absence of dissipation
(β = 0) we have d (P + p)/dt = 0 in this isolated two-body
system, i.e. the total momentum is conserved or the momenta
of the domain wall and spin wave are exchanged to one an-
other via mutual potential U . The dissipation has different
effects on the domain wall and the spin wave packet: The
domain wall experiences a viscous force and slows down due
to dissipation, but the spin wave packet loses its mass by dis-
solving into the background while maintaining its speed. The
above viscosity and dissolution scenarios represent two oppo-
site limits of particle dynamics in a fluid, with the former and
latter denoting the full resistance and compliance of mutual
deformation, respectively [45]. With Eq. (8), we successfully
transformed the highly nontrivial interaction between an inho-
mogeneous magnetic domain wall and a fast-oscillating spin
wave packet into a simple collision scenario between a particle
of constant mass M and a particle with variable mass m.

Domain wall motion driven by spin wave packet. We now
consider the simplest case without dissipation (β = 0), for
which Eq. (8) becomes MẌ = −mχ̈ = −∂XU . Due to the
attractive nature of U , as the spin wave packet passes through
the domain wall, the wave packet and the domain wall expe-
rience a forward and backward jump, respectively, as denoted
by �X and �χ in Fig. 1(c).

More explicitly, a spin wave packet is typically much
lighter than the domain wall, m � M, therefore we may re-
gard the domain wall as more or less static when the packet
passes through the domain wall. The wave packet velocity
at position χ can be approximately evaluated via the energy
conservation mv2

χ/2 − mv2
0/2 = −U (χ − X ), which yields

vχ − v0 � −U (χ − X )

mv0
> 0, (9)

where v0 = vχ→±∞ is the initial and final velocity of the
packet before and after penetration with U = 0. Because of

(a) (b)

FIG. 2. Domain wall motion induced by spin wave packets in
a magnetic wire with (a) without and (b) with dissipation. In (a),
the upper panel is the schematics, and the middle and lower panels
plot the evolution of velocity V and displacement �X induced by
three consecutive packets, respectively. In (b), the upper panel is the
schematics, and the middle and lower panels plot displacement �X
as function of time t and domain wall position X0, respectively. In
each plot, solid lines are calculated based on the particle-collision
model, and dots are extracted from micromagnetic simulations. The
damping constant is α = 1.0 × 10−5 in (a) and α = 0.006 in (b).

this velocity enhancement, the spin wave packet gains a ve-
locity inside the domain wall, thus leading to a forward jump
in comparison to the case without the domain wall:

�χ =
∫

(vχ − v0)dt � −
∫

U

mv2
0

dχ = GM

v2
0

. (10)

In turn, the domain wall acquires a backward jump due to
momentum conservation:

�X = − m

M
�χ = −Gm

v2
0

. (11)

Here, we focus on the displacement of the domain wall, be-
cause the domain wall stops once the wave packet leaves the
domain wall behind.

In the presence of dissipation (β 
= 0), the dynamics of
packet position χ is unaltered in Eq. (8b), hence the packet
forward jump �χ in Eq. (10) remains the same. However,
the domain wall velocity V and the wave packet mass m
are subjected to a similar form of dissipation in −βV and
−βm, which means that both of them decrease by a common
factor of e−βt . Consequently, the domain wall displacement in
Eq. (11) is modified to

�X = −Gm0

v2
0

exp
(
β

χ0 − X0

v0

)
, (12)

where m0 and χ0 are the initial mass and position of the spin
wave packet, and X0 is the initial position of the domain wall.

As shown in Fig. 2, the domain wall displacements �X
in Eqs. (11) and (12) formulated in terms of particle col-
lision are confirmed numerically using the micromagnetic
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(b)(a)

FIG. 3. Domain wall motion induced by a continuous spin wave
in a magnetic wire (a) without and (b) with dissipation. In both
(a) and (b), the upper panels show the schematics, and the lower
panels plot evolution of velocity V . The dots are extracted from mi-
cromagnetic simulations, the solid lines are theoretical calculations
based on particle collision model, and the dashed line in (b) is based
on an empirical anticipation. All settings and parameters follow
Fig. 2.

simulation module built upon the COMSOL MULTIPHYSICS de-
veloped by Yu et al. [46,47]. The magnetic parameters used
in the simulations are (mainly based on yttrium iron gar-
net) as follows: the exchange constant A = 3.28 × 10−11 A m,
the easy-axis anisotropy K = 3.88 × 104 A m−1, the gyro-
scopic ratio γ = 2.21 × 105 m A−1 s−1, the Gilbert damping
constant α = 0.006, and the easy-plane anisotropy is artifi-
cially set to K ′ = 1.552 × 107 A m−1. The spin wave packet is
excited with a central frequency of f = 100 GHz, or a normal-
ized wave vector k0W ≈ 3.5. The corresponding parameters
in the particle collision model are as follows: the domain
wall mass M = 2.2 × 10−27 kg, the spin wave packet mass
m = 3.6 × 10−28 kg, the gravitational constant G = 5.3 ×
1025 m3 kg−1 s−2, dissipation coefficient β = 2.1 × 1010 s−1,
and the initial packet velocity v0 ≈ 4.8 × 103 m s−1. As three
successive spin wave packets penetrate, the domain wall ac-
quires three velocity pulses, and experiences the same amount
of negative displacement for each packet in Fig. 2(a). And
when dissipation becomes remarkable in Fig. 2(b), the domain
wall residing at further positions away from the spin wave
source is subject to a smaller displacement, for which the
exponential decay law in Eq. (12) is obeyed. The domain wall
velocity increases as approaching the spin wave source, which
is simply because the spin wave intensity is stronger near the
source.

Domain wall motion driven by continuous spin wave. In
most experimental and theoretical considerations, a continu-
ous spin wave is excited rather than a wave packet. For such
a case, we may treat the continuous spin wave as a train of
spin wave packets, as schematically shown in Fig. 3. When
the dissipation is absent β = 0, for a continuous spin wave of
density ρ, the mass penetrating through the domain wall in a
time interval �t is m = ρv0�t . Then according to Eq. (11),
the domain wall acquires a backward velocity,

V = �X

�t
= −Gρ

v0
, (13)

as driven collaboratively by multiple spin wave packets vir-
tually decomposed from the continuous wave segment within
the domain wall.

In the case of finite dissipation β 
= 0, if the spin wave
density is ρ0 at the source at x = χ0, then the spin wave
density at the domain wall center X (t ) attenuates exponen-
tially due to dissipation, ρ = ρ0 exp{β|χ0 − X (t )|/v0}, hence
the spin wave density experienced by a moving domain wall
satisfies ρ̇/ρ = −βV/v0. In conjunction with Eq. (13), one
has V̇ /V = ρ̇/ρ = −βV/v0, i.e., the domain wall effectively
experiences a drag force toward the spin wave source with
drag coefficient β/v0. Therefore, the evolution of domain wall
velocity is explicitly described by

V = − |V0|
1 − β|V0|

v0
t
, (14)

where V0 = −Gρ0 exp[β(χ0 − X0)/v0] is the initial velocity
at the moment that the spin wave touches the domain wall.

The validity of the domain wall velocity given by Eqs. (13)
and (14) is confirmed by micromagnetic simulations [47] as
shown in Fig. 3. Irrespective of dissipation, the domain wall
stops immediately once the spin wave leaves the domain wall
behind, indicating that the domain wall is only temporarily
driven by the spin wave during its penetration. In Fig. 3(b),
the evolution of domain wall velocity with dissipation adopts
the reciprocal form in Eq. (14) instead of an exponential
growth form, endorsing the unconventional role of dissipation
in shaping the interplay between the domain wall and spin
wave.

Discussions. The easy-plane ferromagnet is distinct from
its easy-axis counterpart in two aspects: The spin wave is
linearly polarized, and thus does not carry any angular mo-
mentum; the domain wall is inertial, and tends to maintain its
original velocity [29,49,50]. In addition, the equal spin wave
amplitudes and velocities before and after penetration indicate
that the domain wall motion in this work is not induced by
the permanent transfer of angular momentum [17] or linear
momentum [18,19]. The elevated spin wave velocity inside
the domain wall, on the other hand, indicates a temporary
borrowing and a later return of linear momentum between the
spin wave and the domain wall. The above temporary momen-
tum transfer scenario naturally extends to antiferromagnets
and ferrimagnets [29], where the magnetic dynamics can also
be mapped to Lorentz-invariant sine-Gordon equation (3).

The spin wave passes through the domain wall perfectly in
this work, and therefore also shares many common features
with the Balazs thought experiment on light passing through a
block of transparent medium [51,52]. With a noticeably lower
“speed of light” in this magnetic environment, more insights
on the Abraham-Minkowski dilemma are accessible [52].

Conclusions. In conclusion, based on a particle collision
scenario, we show that the domain wall is dragged backward
during penetration of a spin wave in an easy-plane ferromag-
net. The particle-based viewpoint established in this Letter
provides a simple yet powerful tool to analyze the interplay
between soliton and fluctuation waves in various nonlinear
systems [41,42].
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